Publications by authors named "Mike Woerdemann"

Although synchronization is a well-known physical phenomenon, experimental studies of its emergence in living bacterial cells are still scarce. The difficulty in generating a controlled scenario to detect synchronization has limited the experimental outcomes so far. We present a realization based on holographic optical tweezers in which adhered pairs of self-propelled bacteria rotate in a plane.

View Article and Find Full Text PDF

The combination of micro synthetic structures with bacterial flagella motors represents an actual trend for the construction of self-propelled micro-robots. The development of methods for fabrication of these bacteria-based robots is a first crucial step towards the realization of functional miniature and autonomous moving robots. We present a novel scheme based on optical trapping to fabricate living micro-robots.

View Article and Find Full Text PDF

A novel mechanobiological method is presented to explore qualitatively and quantitatively the inside of living biological cells in three dimensions, paving the way to sense intracellular changes during dynamic cellular processes. For this purpose, holographic optical tweezers, which allow the versatile manipulation of nanoscopic and microscopic particles by means of tailored light fields, are combined with self-interference digital holographic microscopy. This biophotonic holographic workstation enables non-contact, minimally invasive, flexible, high-precision optical manipulation and accurate 3D tracking of probe particles that are incorporated by phagocytosis in cells, while simultaneously quantitatively phase imaging the cell morphology.

View Article and Find Full Text PDF

The analysis of dynamic interactions of microorganisms with a host cell is of utmost importance for understanding infection processes. We present a biophotonic holographic workstation that allows optical manipulation of bacteria by holographic optical tweezers and simultaneously monitoring of dynamic processes with quantitative multi-focus phase imaging based on self-interference digital holographic microscopy. Our results show that several bacterial cells, even with non-spherical shape, can be aligned precisely on the surface of living host cells and localized reproducibly in three dimensions.

View Article and Find Full Text PDF

Computer-generated holograms displayed by phase-modulating spatial light modulators have become a well-established tool for beam shaping purposes in holographic optical tweezers. Still, the generation of light intensity patterns with high spatial symmetry and simultaneously without interfering ghost traps is a challenge. We have implemented an iterative Fourier transform algorithm that is capable of controlling these ghost traps and demonstrate the benefit of this approach in the experiment.

View Article and Find Full Text PDF

Counter-propagating optical traps are widely used where long working distances, axially symmetric trapping potentials, or standing light waves are required. We demonstrate that optical phase-conjugation can automatically provide a counter-propagating replica of a wide range of incident light fields in an optical trapping configuration. The resulting counter-propagating traps are self-adjusting and adapt dynamically to changes of the input light field.

View Article and Find Full Text PDF

Organization and patterning of zeolite L crystals with their unique properties such as their one-dimensional nano channel system is of highest topical interest with various applications in many areas of science. We demonstrate full three-dimensional optical control of single zeolite L crystals and for the first time fully reversible, dynamic organization of a multitude of individually controlled zeolite L crystals.

View Article and Find Full Text PDF

Dielectrophoretic forces originating from highly modulated electric fields can be used to trap particles on surfaces. An all-optical way to induce such fields is the use of a photorefractive material, where the fields that modulate the refractive index are present at the surface. We present a method for two-dimensional particle alignment on an optically structured photorefractive lithium niobate crystal.

View Article and Find Full Text PDF

The class of rod-shaped bacteria is an important example of non-spherical objects where defined alignment is desired for the observation of intracellular processes or studies of the flagella. However, all available methods for orientational control of rod-shaped bacteria are either limited with respect to the accessible rotational axes or feasible angles or restricted to one single bacterium. In this paper we demonstrate a scheme to orientate rod-shaped bacteria with holographic optical tweezers (HOT) in any direction.

View Article and Find Full Text PDF

We investigate the properties of angular momentum carrying vortex beams, reflected by a phase-conjugating mirror. It is shown that a self-pumped photorefractive phase-conjugating mirror is suitable to produce stable, high-fidelity phase conjugation of vortex beams. We prove that the topological charge of the vortex beam is maintained, and thus the angular momentum in the laboratory frame of reference is reversed, as it is expected by the time reversal property of the phase-conjugating mirror.

View Article and Find Full Text PDF