J Thorac Cardiovasc Surg
November 2019
Objective: Right-sided mechanical circulatory support for failing Fontan physiology has been largely unsuccessful due to inherent hemodynamic differences between these patients and the target populations for most assist devices. This study uses advanced benchtop modeling of Fontan physiology to examine the use of PediMag and CentriMag to improve failing Fontan hemodynamics.
Methods: Each device was attached to a compliance-matched, patient-specific total cavopulmonary connection in vitro model that used resistances, compliances, and programmable waveforms to establish "failing Fontan" baseline hemodynamics (cardiac output [CO] = 3.
The current methodology of Fontan palliation results in a one "pump" circulatory system with passive flow to the lungs. Inherent hemodynamic differences exist between a biventricular circulatory system and this modified physiology, leading to a host of long-term complications. Mechanical circulatory support (MCS) is a potential option to combat these pathophysiological conditions.
View Article and Find Full Text PDFThe Fontan procedure is a common palliative intervention for sufferers of single ventricle congenital heart defects that results in an anastomosis of the venous return to the pulmonary arteries called the total cavopulmonary connection (TCPC). Local TCPC and global Fontan circulation hemodynamics are studied with in vitro circulatory models because of hemodynamic ties to Fontan patient long-term complications. The majority of in vitro studies, to date, employ a rigid TCPC model.
View Article and Find Full Text PDFCardiovascular simulations have great potential as a clinical tool for planning and evaluating patient-specific treatment strategies for those suffering from congenital heart diseases, specifically Fontan patients. However, several bottlenecks have delayed wider deployment of the simulations for clinical use; the main obstacle is simulation cost. Currently, time-averaged clinical flow measurements are utilized as numerical boundary conditions (BCs) in order to reduce the computational power and time needed to offer surgical planning within a clinical time frame.
View Article and Find Full Text PDF