Publications by authors named "Mike R Burton"

Article Synopsis
  • The style of volcanic eruptions is influenced by how gas and magma separate as they move upward, with strong gas-melt coupling leading to explosive eruptions and weaker coupling causing lava flows.
  • Researchers used x-ray radiography in a high-pressure/high-temperature setup to study bubble dynamics in basaltic magmas, revealing that low-viscosity magmas allow bubbles to merge quickly, maintaining gas-melt coupling.
  • This innovative method enhances understanding of volcanic processes, potentially improving safety measures and risk assessment for volcanic activities.
View Article and Find Full Text PDF

The majority of basaltic magmas stall in the Earth's crust as a result of the rheological evolution caused by crystallization during transport. However, the relationships between crystallinity, rheology and eruptibility remain uncertain because it is difficult to observe dynamic magma crystallization in real time. Here, we present in-situ 4D data for crystal growth kinetics and the textural evolution of pyroxene during crystallization of trachybasaltic magmas in high-temperature experiments under water-saturated conditions at crustal pressures.

View Article and Find Full Text PDF

Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption. We use multiparameter geophysical and geochemical data to show that the 110-square-kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir.

View Article and Find Full Text PDF