Clamp loaders are pentameric AAA+ assemblies that use ATP to open and close circular DNA sliding clamps around DNA. Clamp loaders show homology in all organisms, from bacteria to human. The eukaryotic PCNA clamp is loaded onto 3' primed DNA by the replication factor C (RFC) hetero-pentameric clamp loader.
View Article and Find Full Text PDFThe replication machinery that synthesizes new copies of chromosomal DNA is located at the junction where double-stranded DNA is separated into its two strands. This replication fork DNA structure is at the heart of most assays involving DNA helicases. The helicase enzyme unwinds the replication fork structure into two single-stranded templates which are converted into two daughter duplexes by other proteins, including DNA polymerases.
View Article and Find Full Text PDFMethods Enzymol
March 2022
Baker's yeast, Saccharomyces cerevisiae, is a versatile system for expression of recombinant eukaryotic proteins. This system is simple to use and does not require extraordinary expertise nor tissue culture facilities. Proteins expressed in the yeast system provide eukaryotic post-translational modifications, making it superior to bacterial expression for factors that require post-translational modification.
View Article and Find Full Text PDFPolymerase sliding clamps are ring-shaped proteins that encircle duplex DNA and hold polymerases to DNA for high processivity during synthesis. The crystal structure of clamp-DNA complex reveals that the DNA is highly tilted through the clamp with extensive interaction with the clamp inner surface. In contrast to the tilted clamp-DNA interaction without DNA polymerases, recent structures of replicative polymerases of bacteria, eukaryotes, and archaea that are bound to the clamp and DNA show that the polymerase positions DNA straight through the clamp without direct protein-DNA contacts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2018
The eukaryotic replisome is a multiprotein complex that duplicates DNA. The replisome is sculpted to couple continuous leading strand synthesis with discontinuous lagging strand synthesis, primarily carried out by DNA polymerases ε and δ, respectively, along with helicases, polymerase α-primase, DNA sliding clamps, clamp loaders and many other proteins. We have previously established the mechanisms by which the polymerases ε and δ are targeted to their 'correct' strands, as well as quality control mechanisms that evict polymerases when they associate with an 'incorrect' strand.
View Article and Find Full Text PDFReplicative helicases in all cell types are hexameric rings that unwind DNA by steric exclusion in which the helicase encircles the tracking strand only and excludes the other strand from the ring. This mode of translocation allows helicases to bypass blocks on the strand that is excluded from the central channel. Unlike other replicative helicases, eukaryotic CMG helicase partially encircles duplex DNA at a forked junction and is stopped by a block on the non-tracking (lagging) strand.
View Article and Find Full Text PDFReplicative helicases are ring-shaped hexamers that encircle DNA for duplex unwinding. The currently accepted view of hexameric helicase function is by steric exclusion, where the helicase encircles one DNA strand and excludes the other, acting as a wedge with an external DNA unwinding point during translocation. Accordingly, strand-specific blocks only affect these helicases when placed on the tracking strand, not the excluded strand.
View Article and Find Full Text PDFDNA sliding clamps are rings that tether certain enzymes to DNA. How clamp proteins slide on DNA has remained a mystery. A new crystal structure, together with molecular dynamics and NMR studies, has revealed how the human PCNA clamp slides on DNA.
View Article and Find Full Text PDFCellular genomic DNA is replicated by a multiprotein replisome machine. The replisome contains numerous essential factors that unwind, prime and synthesize each of the two strands of duplex DNA. The antiparallel structure of DNA, and unidirectional activity of DNA polymerases, requires the two strands of DNA to be extended in opposite directions, and this structural feature requires distinctive processes for synthesis of the two strands.
View Article and Find Full Text PDFEukaryotes require 3 DNA polymerases for normal replisome operations, DNA polymerases (Pol) α, delta and epsilon. Recent biochemical and structural studies support the asymmetric use of these polymerases on the leading and lagging strands. Pol epsilon interacts with the 11-subunit CMG helicase, forming a 15-protein leading strand complex that acts processively in leading strand synthesis in vitro, but Pol epsilon is inactive on the lagging strand.
View Article and Find Full Text PDFThe eukaryotic replisome is α multiprotein machine that contains DNA polymerases, sliding clamps, helicase, and primase along with several factors that participate in cell cycle and checkpoint control. The detailed structure of the 11-subunit CMG helicase (Cdc45/Mcm2-7/GINS) has been solved recently by cryoEM single-particle 3D reconstruction and reveals pumpjack motions that imply an unexpected mechanism of DNA translocation. CMG is also the organizing center of the replisome.
View Article and Find Full Text PDFThe machines that decode and regulate genetic information require the translation, transcription and replication pathways essential to all living cells. Thus, it might be expected that all cells share the same basic machinery for these pathways that were inherited from the primordial ancestor cell from which they evolved. A clear example of this is found in the translation machinery that converts RNA sequence to protein.
View Article and Find Full Text PDFThe machinery at the eukaryotic replication fork has seen many new structural advances using electron microscopy and crystallography. Recent structures of eukaryotic replisome components include the Mcm2-7 complex, the CMG helicase, DNA polymerases, a Ctf4 trimer hub and the first look at a core replisome of 20 different proteins containing the helicase, primase, leading polymerase and a lagging strand polymerase. The eukaryotic core replisome shows an unanticipated architecture, with one polymerase sitting above the helicase and the other below.
View Article and Find Full Text PDFWe have reconstituted a eukaryotic leading/lagging strand replisome comprising 31 distinct polypeptides. This study identifies a process unprecedented in bacterial replisomes. While bacteria and phage simply recruit polymerases to the fork, we find that suppression mechanisms are used to position the distinct eukaryotic polymerases on their respective strands.
View Article and Find Full Text PDFProcessivity clamps that hold DNA polymerases to DNA for processivity were the first proteins known to encircle the DNA duplex. At the time, polymerase processivity was thought to be the only function of ring shaped processivity clamps. But studies from many laboratories have identified numerous proteins that bind and function with sliding clamps.
View Article and Find Full Text PDFDNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol α/primase initiates primers on both strands that are extended by Pol ε on the leading strand and by Pol δ on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol ε for leading-strand synthesis, but to date a direct interaction between CMG and Pol ε has not been demonstrated.
View Article and Find Full Text PDFEukaryotes use distinct polymerases for leading- and lagging-strand replication, but how they target their respective strands is uncertain. We reconstituted Saccharomyces cerevisiae replication forks and found that CMG helicase selects polymerase (Pol) ɛ to the exclusion of Pol δ on the leading strand. Even if Pol δ assembles on the leading strand, Pol ɛ rapidly replaces it.
View Article and Find Full Text PDFThe antiparallel structure of DNA requires lagging strand synthesis to proceed in the opposite direction of the replication fork. This imposes unique events that occur only on the lagging strand, such as primase binding to DnaB helicase, RNA synthesis, and SS B antigen (SSB) displacement during Okazaki fragment extension. Single-molecule and ensemble techniques are combined to examine the effect of lagging strand events on the Escherichia coli replisome rate and processivity.
View Article and Find Full Text PDFClamp loaders belong to a family of proteins known as ATPases associated with various cellular activities (AAA+). These proteins utilize the energy from ATP binding and hydrolysis to perform cellular functions. The clamp loader is required to load the clamp onto DNA for use by DNA polymerases to increase processivity.
View Article and Find Full Text PDFIn all domains of life, sliding clamps tether DNA polymerases to DNA to increase the processivity of synthesis. Clamp loaders load clamps onto DNA in a multi-step process that requires ATP binding and hydrolysis. Like other AAA+ proteins, clamp loaders contain conserved Walker A and Walker B sequence motifs, which participate in ATP binding and hydrolysis, respectively.
View Article and Find Full Text PDFThe concentration of ribonucleoside triphosphates (rNTPs) in cells is far greater than the concentration of deoxyribonucleoside triphosphates (dNTPs), and this pool imbalance presents a challenge for DNA polymerases (Pols) to select their proper substrate. This report examines the effect of nucleotide pool imbalance on the rate and fidelity of the Escherichia coli replisome. We find that rNTPs decrease replication fork rate by competing with dNTPs at the active site of the C-family Pol III replicase at a step that does not require correct base-pairing.
View Article and Find Full Text PDFAlthough homologous recombination is considered an accurate form of DNA repair, genetics suggest that the Escherichia coli translesion DNA polymerase IV (Pol IV, also known as DinB) promotes error-prone recombination during stress, which allows cells to overcome adverse conditions. However, how Pol IV functions and is regulated during recombination under stress is unknown. We show that Pol IV is highly proficient in error-prone recombination and is preferentially recruited to displacement loops (D loops) at stress-induced concentrations in vitro.
View Article and Find Full Text PDFBackground: In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E.
View Article and Find Full Text PDF