Publications by authors named "Mike Lange"

Lipid droplets (LDs) are organelles that store and supply lipids based on cellular needs. While mechanisms preventing oxidative damage to membrane phospholipids are established, the vulnerability of LD neutral lipids to peroxidation and protective mechanisms are unknown. Here, we identify LD-localized Ferroptosis Suppressor Protein 1 (FSP1) as a critical regulator that prevents neutral lipid peroxidation by recycling coenzyme Q10 (CoQ10) to its lipophilic antioxidant form.

View Article and Find Full Text PDF

Unlabelled: Proteolysis of hydrophobic helices is required for complete breakdown of every transmembrane protein trafficked to the lysosome and sustains high rates of endocytosis. However, the lysosomal mechanisms for degrading hydrophobic domains remain unknown. Combining lysosomal proteomics with functional genomic data mining, we identify Lysosomal Leucine Aminopeptidase (LyLAP; formerly Phospholipase B Domain-Containing 1) as the hydrolase most tightly associated with elevated endocytic activity.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists from 34 labs in 19 countries worked together to measure certain fats (ceramides) in human blood using special techniques.
  • They used both standard methods and their own methods to get very accurate and consistent results.
  • The study helps improve future medical tests and treatments by providing reliable information about these fats in blood samples.
View Article and Find Full Text PDF

Imbalances in lipid storage and secretion lead to the accumulation of hepatocyte lipid droplets (LDs) (i.e., hepatic steatosis).

View Article and Find Full Text PDF

The canonical biological function of selenium is in the production of selenocysteine residues of selenoproteins, and this forms the basis for its role as an essential antioxidant and cytoprotective micronutrient. Here we demonstrate that, via its metabolic intermediate hydrogen selenide, selenium reduces ubiquinone in the mitochondria through catalysis by sulfide quinone oxidoreductase. Through this mechanism, selenium rapidly protects against lipid peroxidation and ferroptosis in a timescale that precedes selenoprotein production, doing so even when selenoprotein production has been eliminated.

View Article and Find Full Text PDF

Ferroptosis is a non-apoptotic form of cell death that can be triggered by inhibiting the system x cystine/glutamate antiporter or the phospholipid hydroperoxidase glutathione peroxidase 4 (GPX4). We have investigated how cell cycle arrest caused by stabilization of p53 or inhibition of cyclin-dependent kinase 4/6 (CDK4/6) impacts ferroptosis sensitivity. Here, we show that cell cycle arrest can enhance sensitivity to ferroptosis induced by covalent GPX4 inhibitors (GPX4i) but not system x inhibitors.

View Article and Find Full Text PDF

Cellular quality control systems sense and mediate homeostatic responses to prevent the buildup of aberrant macromolecules, which arise from errors during biosynthesis, damage by environmental insults, or imbalances in enzymatic and metabolic activity. Lipids are structurally diverse macromolecules that have many important cellular functions, ranging from structural roles in membranes to functions as signaling and energy-storage molecules. As with other macromolecules, lipids can be damaged (e.

View Article and Find Full Text PDF
Article Synopsis
  • * Cell cycle arrest makes cells more sensitive to ferroptosis induced by GPX4 inhibition but not by system x inhibition, due to increased levels of certain fatty acids in arrested cells.
  • * The protein EMP2 decreases during cell cycle arrest, and its low levels contribute to increased sensitivity to ferroptosis when GPX4 is inhibited, with a GPX4 inhibitor potentially enhancing this effect when combined with a cell cycle arrest agent.
View Article and Find Full Text PDF

Despite the key roles of perilipin-2 (PLIN2) in governing lipid droplet (LD) metabolism, the mechanisms that regulate PLIN2 levels remain incompletely understood. Here, we leverage a set of genome-edited human PLIN2 reporter cell lines in a series of CRISPR-Cas9 loss-of-function screens, identifying genetic modifiers that influence PLIN2 expression and post-translational stability under different metabolic conditions and in different cell types. These regulators include canonical genes that control lipid metabolism as well as genes involved in ubiquitination, transcription, and mitochondrial function.

View Article and Find Full Text PDF

Ferroptosis is a regulated form of cell death associated with the iron-dependent accumulation of phospholipid hydroperoxides. Inducing ferroptosis is a promising approach to treat therapy-resistant cancer. Ferroptosis suppressor protein 1 (FSP1) promotes ferroptosis resistance in cancer by generating the antioxidant form of coenzyme Q10 (CoQ).

View Article and Find Full Text PDF

Hydropersulfides are implicated in cellular responses to oxidative stress. In two landmark papers, Barayeu et al. and Wu et al.

View Article and Find Full Text PDF

The bioactive sphingolipid ceramide impacts diverse cellular processes (e.g. apoptosis and cell proliferation) through its effects on membrane dynamics and intracellular signaling pathways.

View Article and Find Full Text PDF

Lipids are a structurally diverse class of biomolecules which can undergo a variety of chemical modifications. Among them, lipid (per)oxidation attracts most of the attention due to its significance in the regulation of inflammation, cell proliferation and death programs. Despite their apparent regulatory significance, the molecular repertoire of oxidized lipids remains largely elusive as accurate annotation of lipid modifications is complicated by their low abundance and often unknown, biological context-dependent structural diversity.

View Article and Find Full Text PDF

Obesity, characterized by expansion and metabolic dysregulation of white adipose tissue (WAT), has reached pandemic proportions and acts as a primer for a wide range of metabolic disorders. Remodeling of WAT lipidome in obesity and associated comorbidities can explain disease etiology and provide valuable diagnostic and prognostic markers. To support understanding of WAT lipidome remodeling at the molecular level, we provide in-depth lipidomics profiling of human subcutaneous and visceral WAT of lean and obese individuals.

View Article and Find Full Text PDF

Lipid metabolism is altered in the acidic tumor microenvironment. Here, the authors show that polyunsaturated fatty acid supplementation, together with concomitant inhibition of lipid droplet biogenesis, induces ferroptosis in acidic cancer cells. These findings highlight the potential to exploit cancer dependence on exogenous lipids as a therapeutic vulnerability.

View Article and Find Full Text PDF

Cellular and organismal redox imbalance leading to the accumulation of reactive oxygen species significantly enhances lipid peroxidation (LPO). LPO is relatively well studied for phospholipid membranes and to some extent for circulating lipoproteins. However, it is rarely addressed for intracellular lipid droplets (LDs).

View Article and Find Full Text PDF

Free radical driven lipid peroxidation is a chain reaction which can lead to oxidative degradation of biological membranes. Propagation vs. termination rates of peroxidation in biological membranes are determined by a variety of factors including fatty acyl chain composition, presence of antioxidants, as well as biophysical properties of mono- or bilayers.

View Article and Find Full Text PDF

Lipidomics analysis for large-scale studies aiming at the identification and quantification of natural lipidomes is often performed using LC-MS-based data acquisition. However, the choice of suitable LC-MS method for accurate lipid quantification remains a matter of debate. Here, we performed the systematic comparison between two HRAM-MS-based quantification workflows based on HILIC and RPLC MS by quantifying 191 lipids from five lipid classes in human blood plasma using deuterated standards in the "one ISTD-per-lipid class" approach.

View Article and Find Full Text PDF

H S is a gaseous signaling molecule that modifies cysteine residues in proteins to form persulfides (P-SSH). One family of proteins modified by H S are zinc finger (ZF) proteins, which contain multiple zinc-coordinating cysteine residues. Herein, we report the reactivity of H S with a ZF protein called tristetraprolin (TTP).

View Article and Find Full Text PDF

Cytochrome (cyt ) is a small hemoprotein involved in electron shuttling in the mitochondrial respiratory chain and is now also recognized as an important mediator of apoptotic cell death. Its role in inducing programmed cell death is closely associated with the formation of a complex with the mitochondrion-specific phospholipid cardiolipin (CL), leading to a gain of peroxidase activity. However, the molecular mechanisms behind this gain and eventual cyt autoinactivation via its release from mitochondrial membranes remain largely unknown.

View Article and Find Full Text PDF

Lipids are dynamic constituents of biological systems, rapidly responding to any changes in physiological conditions. Thus, there is a large interest in lipid-derived markers for diagnostic and prognostic applications, especially in translational and systems medicine research. As lipid identification remains a bottleneck of modern untargeted lipidomics, we developed LipidHunter, a new open source software for the high-throughput identification of phospholipids in data acquired by LC-MS and shotgun experiments.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) has emerged as a signalling molecule capable of regulating several important physiological functions such as blood pressure, neurotransmission and inflammation. The mechanisms behind these effects are still largely elusive and oxidative posttranslational modification of cysteine residues (protein persulfidation or -sulfhydration) has been proposed as the main pathway for HS-induced biological and pharmacological effects. As a signalling mechanism, persulfidation has to be controlled.

View Article and Find Full Text PDF
Article Synopsis
  • Hydrogen sulfide (H2S) is gaining attention for its role in biological processes, particularly its reactivity with oxidized thiol derivatives rather than reduced thiols.
  • A study found that the reactive form of H2S, HS(-), reacts less efficiently with disulfides and sulfenic acids compared to thiolates but still produces significant post-translational modifications known as persulfides.
  • The research reveals that persulfides are more reactive than traditional thiols and their formation is increased when cells are treated with hydrogen peroxide, highlighting the complexity of H2S's biological functions.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhmstpp84ri356gv855k8o32h9qphpomk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once