We present a free-running 80-MHz dual-comb polarization-multiplexed solid-state laser which delivers 1.8 W of average power with 110-fs pulse duration per comb. With a high-sensitivity pump-probe setup, we apply this free-running dual-comb laser to picosecond ultrasonic measurements.
View Article and Find Full Text PDFWhen reducing the size of a material from bulk down to nanoscale, the enhanced surface-to-volume ratio and the presence of interfaces make the properties of nano-objects very sensitive not only to confinement effects but also to their local environment. In the optical domain, the latter dependence can be exploited to tune the plasmonic response of metal nanoparticles by controlling their surroundings, notably applying high pressures. To date, only a few optical absorption experiments have demonstrated this feasibility, on ensembles of metal nanoparticles in a diamond anvil cell.
View Article and Find Full Text PDFA topological state with protected propagation of elastic waves is achieved by appropriately engineering a phononic metamaterial based on 2D pentamode structures in silicon. Gapless edge states in the designed structure, which are characterized by pseudospin-dependent transport, provide backscattering-immune propagation of the elastic wave along bend paths. The role of the states responsible for forward and backward transfer can be interchanged by design.
View Article and Find Full Text PDFWe investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer.
View Article and Find Full Text PDF