Int J Radiat Oncol Biol Phys
February 2015
Purpose: In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits.
Methods And Materials: Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy.
Background: Multiplexed detection of low-level mutations presents a technical challenge for many technologies, including cancer gene panels used for targeted-resequencing. Analysis of mutations below approximately 2%-5% abundance in tumors with heterogeneity, samples with stromal contamination, or biofluids is problematic owing to increased noise from sequencing errors. Technologies that reduce noise via deep sequencing unavoidably reduce throughput and increase cost.
View Article and Find Full Text PDFThe advent of nanotechnology has bolstered a variety of nanoparticles based platforms for different biomedical applications. A better understanding for engineering novel nanoparticles for applications in cancer staging and therapy requires careful assessment of the nanoparticle's physico-chemical properties. Herein we report a facile synthesis method for PEGylated PLGA nanoparticles encapsulating anti-cancer drug doxorubicin for cancer imaging and therapy.
View Article and Find Full Text PDFThis study determines the optimal clinical scenarios for gold nanoparticle dose enhancement as a function of irradiation conditions and potential biological targets using megavoltage x-ray beams. Four hundred and eighty clinical beams were studied for different potential cellular or sub-cellular targets. Beam quality was determined based on a 6 MV linac with and without a flattening filter for various delivery conditions.
View Article and Find Full Text PDF