The Common Fund Data Ecosystem (CFDE) has created a flexible system of data federation that enables researchers to discover datasets from across the US National Institutes of Health Common Fund without requiring that data owners move, reformat, or rehost those data. This system is centered on a catalog that integrates detailed descriptions of biomedical datasets from individual Common Fund Programs' Data Coordination Centers (DCCs) into a uniform metadata model that can then be indexed and searched from a centralized portal. This Crosscut Metadata Model (C2M2) supports the wide variety of data types and metadata terms used by individual DCCs and can readily describe nearly all forms of biomedical research data.
View Article and Find Full Text PDFDatabase evolution is a notoriously difficult task, and it is exacerbated by the necessity to evolve database-dependent applications. As science becomes increasingly dependent on sophisticated data management, the need to evolve an array of database-driven systems will only intensify. In this paper, we present an architecture for data-centric ecosystems that allows the components to seamlessly co-evolve by centralizing the models and mappings at the data service and pushing model-adaptive interactions to the database clients.
View Article and Find Full Text PDFBig biomedical data create exciting opportunities for discovery, but make it difficult to capture analyses and outputs in forms that are findable, accessible, interoperable, and reusable (FAIR). In response, we describe tools that make it easy to capture, and assign identifiers to, data and code throughout the data lifecycle. We illustrate the use of these tools via a case study involving a multi-step analysis that creates an atlas of putative transcription factor binding sites from terabytes of ENCODE DNase I hypersensitive sites sequencing data.
View Article and Find Full Text PDFExploring neuroanatomical sex differences using a multivariate statistical learning approach can yield insights that cannot be derived with univariate analysis. While gross differences in total brain volume are well-established, uncovering the more subtle, regional sex-related differences in neuroanatomy requires a multivariate approach that can accurately model spatial complexity as well as the interactions between neuroanatomical features. Here, we developed a multivariate statistical learning model using a support vector machine (SVM) classifier to predict sex from MRI-derived regional neuroanatomical features from a single-site study of 967 healthy youth from the Philadelphia Neurodevelopmental Cohort (PNC).
View Article and Find Full Text PDFProgress in our understanding of brain disorders increasingly relies on the costly collection of large standardized brain magnetic resonance imaging (MRI) data sets. Moreover, the clinical interpretation of brain scans benefits from compare and contrast analyses of scans from patients with similar, and sometimes rare, demographic, diagnostic, and treatment status. A solution to both needs is to acquire standardized, research-ready clinical brain scans and to build the information technology infrastructure to share such scans, along with other pertinent information, across hospitals.
View Article and Find Full Text PDF