Publications by authors named "Mike C Payne"

Charge transport properties in single-walled carbon nanotubes (SWCNTs) can be significantly modified through doping, tuning their electrical and thermoelectric properties. In our study, we used more than 40 nitrogen-bearing compounds as dopants and determined their impact on the material's electrical conductivity. The application of nitrogen compounds of diverse structures and electronic configurations enabled us to determine how the dopant nature affects the SWCNTs.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) are materials with exceptional electrical, thermal, mechanical, and optical properties. Ever since it was demonstrated that they also possess interesting thermoelectric properties, they have been considered a promising solution for thermal energy harvesting. In this study, we present a simple method to enhance their performance.

View Article and Find Full Text PDF

The fundamental colloidal properties of pristine graphene flakes remain incompletely understood, with conflicting reports about their chemical character, hindering potential applications that could exploit the extraordinary electronic, thermal, and mechanical properties of graphene. Here, the true amphipathic nature of pristine graphene flakes is demonstrated through wet-chemistry testing, optical microscopy, electron microscopy, and density functional theory, molecular dynamics, and Monte Carlo calculations, and it is shown how this fact paves the way for the formation of ultrastable water/oil emulsions. In contrast to commonly used graphene oxide flakes, pristine graphene flakes possess well-defined hydrophobic and hydrophilic regions: the basal plane and edges, respectively, the interplay of which allows small flakes to be utilized as stabilizers with an amphipathic strength that depends on the edge-to-surface ratio.

View Article and Find Full Text PDF

First-principles electronic structure calculations are now accessible to a very large community of users across many disciplines, thanks to many successful software packages, some of which are described in this special issue. The traditional coding paradigm for such packages is monolithic, i.e.

View Article and Find Full Text PDF

We present an overview of the onetep program for linear-scaling density functional theory (DFT) calculations with large basis set (plane-wave) accuracy on parallel computers. The DFT energy is computed from the density matrix, which is constructed from spatially localized orbitals we call Non-orthogonal Generalized Wannier Functions (NGWFs), expressed in terms of periodic sinc (psinc) functions. During the calculation, both the density matrix and the NGWFs are optimized with localization constraints.

View Article and Find Full Text PDF

Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polarization in larger molecules or proteins, and the parametrization process is labor-intensive. Using linear-scaling density functional theory and atoms-in-molecule electron density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical calculations for use in biomolecular modeling of organic and biomolecular systems.

View Article and Find Full Text PDF

The density derived electrostatic and chemical (DDEC/c3) method is implemented into the onetep program to compute net atomic charges (NACs), as well as higher-order atomic multipole moments, of molecules, dense solids, nanoclusters, liquids, and biomolecules using linear-scaling density functional theory (DFT) in a distributed memory parallel computing environment. For a >1000 atom model of the oxygenated myoglobin protein, the DDEC/c3 net charge of the adsorbed oxygen molecule is approximately -1e (in agreement with the Weiss model) using a dynamical mean field theory treatment of the iron atom, but much smaller in magnitude when using the generalized gradient approximation. For GaAs semiconducting nanorods, the system dipole moment using the DDEC/c3 NACs is about 5% higher in magnitude than the dipole computed directly from the quantum mechanical electron density distribution, and the DDEC/c3 NACs reproduce the electrostatic potential to within approximately 0.

View Article and Find Full Text PDF

Linear-scaling quantum mechanical density functional theory calculations have been applied to study the rearrangement of chorismate to prephenate in large-scale models of the Bacillus subtilis chorismate mutase enzyme. By treating up to 2000 atoms at a consistent quantum mechanical level of theory, we obtain an unbiased, almost parameter-free description of the transition state geometry and energetics. The activation energy barrier is calculated to be lowered by 10.

View Article and Find Full Text PDF

Constrained geometric simulations have been performed for the recently published closed-channel state of the nicotinic acetylcholine receptor. These simulations support the theory that correlated motion in the flexible β-sheet structure of the extracellular domain helps to communicate a "conformational wave", spreading from the acetylcholine binding pocket. Furthermore, we have identified key residues that act at the interface between subunits and between domains that could potentially facilitate rapid communication between the binding site and the transmembrane gate.

View Article and Find Full Text PDF

We carry out a first-principles atomistic study of the electronic mechanisms of ligand binding and discrimination in the myoglobin protein. Electronic correlation effects are taken into account using one of the most advanced methods currently available, namely a linear-scaling density functional theory (DFT) approach wherein the treatment of localized iron 3d electrons is further refined using dynamical mean-field theory. This combination of methods explicitly accounts for dynamical and multireference quantum physics, such as valence and spin fluctuations, of the 3d electrons, while treating a significant proportion of the protein (more than 1,000 atoms) with DFT.

View Article and Find Full Text PDF

We present progress toward a first-principles parametrization of the Hamiltonian of the Fenna-Matthews-Olson pigment-protein complex, a molecule that has become key to understanding the role of quantum dynamics in photosynthetic exciton energy transfer. To this end, we have performed fully quantum mechanical calculations on each of the seven bacteriochlorophyll pigments that make up the complex, including a significant proportion of their protein environment (more than 2000 atoms), using linear-scaling density functional theory exploiting a recent development for the computation of excited states. Local pigment transition energies and interpigment coupling between optical transitions have been calculated and are in good agreement with the literature consensus.

View Article and Find Full Text PDF

Atomic partial charges for use in traditional force fields for biomolecular simulation are often fit to the electrostatic potentials of small molecules and, hence, neglect large-scale electronic polarization. On the other hand, recent advances in atoms-in-molecule charge derivation schemes show promise for use in flexible force fields but are limited in size by the underlying quantum mechanical calculation of the electron density. Here, we implement the density derived electrostatic and chemical charges method in the linear-scaling density functional theory code ONETEP.

View Article and Find Full Text PDF

Accurate prediction of hydration free energies is a key objective of any free energy method that is applied to modeling and understanding interactions in the aqueous phase. Inhomogeneous fluid solvation theory (IFST) is a statistical mechanical method for calculating solvation free energies by quantifying the effect of a solute acting as a perturbation to bulk water. IFST has found wide application in understanding hydration phenomena in biological systems, but quantitative applications have not been comprehensively assessed.

View Article and Find Full Text PDF

We propose a mechanism for binding of diatomic ligands to heme based on a dynamical orbital selection process. This scenario may be described as bonding determined by local valence fluctuations. We support this model using linear-scaling first-principles calculations, in combination with dynamical mean-field theory, applied to heme, the kernel of the hemoglobin metalloprotein central to human respiration.

View Article and Find Full Text PDF

A detailed study of energy differences between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO gaps) in protein systems and water clusters is presented. Recent work questioning the applicability of Kohn-Sham density-functional theory to proteins and large water clusters (Rudberg 2012 J. Phys.

View Article and Find Full Text PDF

First principles electronic structure calculations are typically performed in terms of molecular orbitals (or bands), providing a straightforward theoretical avenue for approximations of increasing sophistication, but do not usually provide any qualitative chemical information about the system. We can derive such information via post-processing using natural bond orbital (NBO) analysis, which produces a chemical picture of bonding in terms of localized Lewis-type bond and lone pair orbitals that we can use to understand molecular structure and interactions. We present NBO analysis of large-scale calculations with the ONETEP linear-scaling density functional theory package, which we have interfaced with the NBO 5 analysis program.

View Article and Find Full Text PDF

Vanadium dioxide undergoes a first order metal-insulator transition at 340 K. In this Letter, we develop and carry out state-of-the-art linear scaling density-functional theory calculations refined with nonlocal dynamical mean-field theory. We identify a complex mechanism, a Peierls-assisted orbital selection Mott instability, which is responsible for the insulating M(1) phase, and which furthermore survives a moderate degree of disorder.

View Article and Find Full Text PDF

Myoglobin modulates the binding of diatomic molecules to its heme group via hydrogen-bonding and steric interactions with neighboring residues, and is an important benchmark for computational studies of biomolecules. We have performed calculations on the heme binding site and a significant proportion of the protein environment (more than 1000 atoms) using linear-scaling density functional theory and the DFT+U method to correct for self-interaction errors associated with localized 3d states. We confirm both the hydrogen-bonding nature of the discrimination effect (3.

View Article and Find Full Text PDF

The simulation of complex chemical systems often requires a multi-level description, in which a region of special interest is treated using a computationally expensive quantum mechanical (QM) model while its environment is described by a faster, simpler molecular mechanical (MM) model. Furthermore, studying dynamic effects in solvated systems or bio-molecules requires a variable definition of the two regions, so that atoms or molecules can be dynamically re-assigned between the QM and MM descriptions during the course of the simulation. Such reassignments pose a problem for traditional QM/MM schemes by exacerbating the errors that stem from switching the model at the boundary.

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) have been identified as a vital regulator of cellular pathways and networks. However, the determinants that control binding affinity and specificity at protein surfaces are incompletely characterized and thus unable to be exploited for the purpose of developing PPI inhibitors to control cellular pathways in disease states. One of the key factors in intermolecular interactions that remains poorly understood is the role of water molecules and in particular the importance of solvent entropy.

View Article and Find Full Text PDF

The breast cancer suppressor BRCA2 controls the recombinase RAD51 in the reactions that mediate homologous DNA recombination, an essential cellular process required for the error-free repair of DNA double-stranded breaks. The primary mode of interaction between BRCA2 and RAD51 is through the BRC repeats, which are ∼35 residue peptide motifs that interact directly with RAD51 in vitro. Human BRCA2, like its mammalian orthologues, contains 8 BRC repeats whose sequence and spacing are evolutionarily conserved.

View Article and Find Full Text PDF

Using first-principles density functional calculations, magnetically induced currents are obtained for zigzag single-walled carbon nanotubes. Clear differences and trends in current flow are observed between the different nanotube families. In particular, for a magnetic field applied along the tube axis, the current response of the λ = 0 infinite nanotubes is paramagnetic, whereas for λ = 1 and 2 nanotubes, the response is diamagnetic.

View Article and Find Full Text PDF

The Polo-Like Kinase 1 (PLK1) acts as a central regulator of mitosis and is over-expressed in a wide range of human tumours where high levels of expression correlate with a poor prognosis. PLK1 comprises two structural elements, a kinase domain and a polo-box domain (PBD). The PBD binds phosphorylated substrates to control substrate phosphorylation by the kinase domain.

View Article and Find Full Text PDF

We introduce a class of interatomic potential models that can be automatically generated from data consisting of the energies and forces experienced by atoms, as derived from quantum mechanical calculations. The models do not have a fixed functional form and hence are capable of modeling complex potential energy landscapes. They are systematically improvable with more data.

View Article and Find Full Text PDF