Publications by authors named "Mike Bodkin"

Protein-ligand binding prediction typically relies on docking methodologies and associated scoring functions to propose the binding mode of a ligand in a biological target. Significant challenges are associated with this approach, including the flexibility of the protein-ligand system, solvent-mediated interactions, and associated entropy changes. In addition, scoring functions are only weakly accurate due to the short time required for calculating enthalpic and entropic binding interactions.

View Article and Find Full Text PDF

Structure-based drug design (SBDD) is rapidly evolving to be a fundamental tool for faster and more cost-effective methods of lead drug discovery. SBDD aims to offer a computational replacement to traditional high-throughput screening (HTS) methods of drug discovery. This "virtual screening" technique utilizes the structural data of a target protein in conjunction with large databases of potential drug candidates and then applies a range of different computational techniques to determine which potential candidates are likely to bind with high affinity and efficacy.

View Article and Find Full Text PDF

Scoring functions for the prediction of protein-ligand binding affinity have seen renewed interest in recent years when novel machine learning and deep learning methods started to consistently outperform classical scoring functions. Here we explore the use of atomic environment vectors (AEVs) and feed-forward neural networks, the building blocks of several neural network potentials, for the prediction of protein-ligand binding affinity. The AEV-based scoring function, which we term AEScore, is shown to perform as well or better than other state-of-the-art scoring functions on binding affinity prediction, with an RMSE of 1.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs) have enormous physiological and biomedical importance, and therefore it is not surprising that they are the targets of many prescribed drugs. Further progress in GPCR drug discovery is highly dependent on the availability of protein structural information. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions.

View Article and Find Full Text PDF

The understanding of binding interactions between a protein and a small molecule plays a key role in the rationalization of potency and selectivity and in design of new ideas. However, even when a target of interest is structurally enabled, visual inspection and force field-based molecular mechanics calculations cannot always explain the full complexity of the molecular interactions that are critical in drug design. Quantum mechanical methods have the potential to address this shortcoming, but traditionally, computational expense has made the application of these calculations impractical.

View Article and Find Full Text PDF

There has been fantastic progress in solving GPCR crystal structures. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions.

View Article and Find Full Text PDF

Drug-target residence time, the length of time for which a small molecule stays bound to its receptor target, has increasingly become a key property for optimization in drug discovery programs. However, its in silico prediction has proven difficult. Here we describe a method, using atomistic ensemble-based steered molecular dynamics (SMD), to observe the dissociation of ligands from their target G protein-coupled receptor in a time scale suitable for drug discovery.

View Article and Find Full Text PDF

GPCR modeling approaches are widely used in the hit-to-lead (H2L) and lead optimization (LO) stages of drug discovery. The aims of these modeling approaches are to predict the 3D structures of the receptor-ligand complexes, to explore the key interactions between the receptor and the ligand and to utilize these insights in the design of new molecules with improved binding, selectivity or other pharmacological properties. In this book chapter, we present a brief survey of key computational approaches integrated with hierarchical GPCR modeling protocol (HGMP) used in hit-to-lead (H2L) and in lead optimization (LO) stages of structure-based drug discovery (SBDD).

View Article and Find Full Text PDF

The understanding of binding interactions between any protein and a small molecule plays a key role in the rationalization of affinity and selectivity. It is essential for an efficient structure-based drug design (SBDD) process. FMO enables ab initio approaches to be applied to systems that conventional quantum-mechanical (QM) methods would find challenging.

View Article and Find Full Text PDF

The reliable and precise evaluation of receptor-ligand interactions and pair-interaction energy is an essential element of rational drug design. While quantum mechanical (QM) methods have been a promising means by which to achieve this, traditional QM is not applicable for large biological systems due to its high computational cost. Here, the fragment molecular orbital (FMO) method has been used to accelerate QM calculations, and by combining FMO with the density-functional tight-binding (DFTB) method we are able to decrease computational cost 1000 times, achieving results in seconds, instead of hours.

View Article and Find Full Text PDF

The understanding of binding interactions between any protein and a small molecule plays a key role in the rationalization of affinity and selectivity and is essential for an efficient structure-based drug discovery (SBDD) process. Clearly, to begin SBDD, a structure is needed, and although there has been fantastic progress in solving G-protein-coupled receptor (GPCR) crystal structures, the process remains quite slow and is not currently feasible for every GPCR or GPCR-ligand complex. This situation significantly limits the ability of X-ray crystallography to impact the drug discovery process for GPCR targets in 'real-time' and hence there is still a need for other practical and cost-efficient alternatives.

View Article and Find Full Text PDF

Inhibition of inducible T-cell kinase (ITK), a nonreceptor tyrosine kinase, may represent a novel treatment for allergic asthma. In our previous reports, we described the discovery of sulfonylpyridine (SAP), benzothiazole (BZT), indazole (IND), and tetrahydroindazole (THI) series as novel ITK inhibitors and how computational tools such as dihedral scans and docking were used to support this process. X-ray crystallography and modeling were applied to provide essential insight into ITK-ligand interactions.

View Article and Find Full Text PDF

Agonism of the 5-HT2C serotonin receptor has been associated with the treatment of a number of diseases including obesity, psychiatric disorders, sexual health, and urology. However, the development of effective 5-HT2C agonists has been hampered by the difficulty in obtaining selectivity over the closely related 5-HT2B receptor, agonism of which is associated with irreversible cardiac valvulopathy. Understanding how to design selective agonists requires exploration of the structural features governing the functional uniqueness of the target receptor relative to related off targets.

View Article and Find Full Text PDF

Our interpretation of ligand-protein interactions is often informed by high-resolution structures, which represent the cornerstone of structure-based drug design. However, visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum Mechanics approaches are often too computationally expensive, but one method, Fragment Molecular Orbital (FMO), offers an excellent compromise and has the potential to reveal key interactions that would otherwise be hard to detect.

View Article and Find Full Text PDF

In this issue, Nagase and colleagues report the discovery of the first selective nonpeptidic orexin 2 receptor (OX2R) agonists. The discovery of these OX2R selective agonists opens up new avenues for therapies related to the activation of the orexin system, especially with respect to the treatment of sleep disorders such as narcolepsy.

View Article and Find Full Text PDF

G-protein coupled receptors (GPCRs) are the targets of over half of all prescribed drugs today. The UniProt database has records for about 800 proteins classified as GPCRs, but drugs have only been developed against 50 of these. Thus, there is huge potential in terms of the number of targets for new therapies to be designed.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfogs2rtbce5svadjmuiuves9kc9kcu6a): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once