An important consideration for biopharmaceutical processes is the cost of goods (CoGs) of biotherapeutics manufacturing. CoGs can be reduced by dramatically increasing the productivity of the bioreactor process. In this study, we demonstrate that an intensified process which couples a perfused N-1 seed reactor and a fully automated high inoculation density (HID) N stage reactor substantially increases the bioreactor productivity as compared to a low inoculation density (LID) control fed-batch process.
View Article and Find Full Text PDFBiologics manufacturing is increasingly moving toward intensified processes that require novel control strategies in order to achieve higher titers in shorter periods of time compared to traditional fed-batch cultures. In order to implement these strategies for intensified processes, continuous process monitoring is often required. To this end, inline Raman spectroscopy was used to develop partial least squares models to monitor changes in residual concentrations of glucose, phenylalanine and methionine during the culture of five different glutamine synthetase piggyBac Chinese hamster ovary clones cultured using an intensified high inoculation density fed-batch platform process.
View Article and Find Full Text PDF