In this paper, we determined the optimal flow rate trajectory during the loading phase of a mAb capture column. For this purpose, a multi-objective function was used, consisting of productivity and resin utilization. Several general types of trajectories were considered, and the optimal Pareto points were obtained for all of them.
View Article and Find Full Text PDFWith continued development of integrated and continuous downstream purification processes, tuning and optimization become increasingly complicated with additional parameters and codependent variables over the sequence. This article offers a novel perspective of nonlinear optimization of integrated sequences with regard to individual column sizes, flow rates, and scheduling. The problem setup itself is a versatile tool to be used in downstream design which is demonstrated in two case studies: a four-column integrated sequence and a continuously loaded twin-capture setup with five columns.
View Article and Find Full Text PDFThis study presents a deterministic, lumped model to simulate mesoscale sustainable drainage systems (SuDS) based on a conceptualization of the stormwater control measures (SCMs) making up the system and their influence on the runoff process. The conceptualization mainly relies on parameters that are easily quantifiable based on the physical characteristics of the SCMs. Introducing a nonlinear reservoir model at the downstream end of the SuDS results in a fast model that can realistically describe the runoff process at low computational cost.
View Article and Find Full Text PDF