Degenerin/epithelial Na(+) channels (DEG/ENaC) represent a diverse family of voltage-insensitive cation channels whose functions include Na(+) transport across epithelia, mechanosensation, nociception, salt sensing, modification of neurotransmission, and detecting the neurotransmitter FMRFamide. We previously showed that the Drosophila melanogaster Deg/ENaC gene lounge lizard (llz) is co-transcribed in an operon-like locus with another gene of unknown function, CheB42a. Because operons often encode proteins in the same biochemical or physiological pathway, we hypothesized that CHEB42A and LLZ might function together.
View Article and Find Full Text PDFNo animal models replicate the complexity of human depression. However, a number of behavioral tests in rodents are sensitive to antidepressants and may thus tap important underlying biological factors. Such models may also offer the best opportunity to discover novel treatments.
View Article and Find Full Text PDFThe acid-sensing ion channel 1a (ASIC1a) is widely expressed in central and peripheral neurons where it generates transient cation currents when extracellular pH falls. ASIC1a confers pH-dependent modulation on postsynaptic dendritic spines and has critical effects in neurological diseases associated with a reduced pH. However, knowledge of the proteins that interact with ASIC1a and influence its function is limited.
View Article and Find Full Text PDFMost seizures stop spontaneously; however, the molecular mechanisms that terminate seizures remain unknown. Observations that seizures reduced brain pH and that acidosis inhibited seizures indicate that acidosis halts epileptic activity. Because acid-sensing ion channel 1a (ASIC1a) is exquisitely sensitive to extracellular pH and regulates neuron excitability, we hypothesized that acidosis might activate ASIC1a, which would terminate seizures.
View Article and Find Full Text PDFBackground: The molecular mechanisms underlying innate fear are poorly understood. Previous studies indicated that the acid sensing ion channel ASIC1a influences fear behavior in conditioning paradigms. However, these differences may have resulted from an ASIC1a effect on learning, memory, or the expression of fear.
View Article and Find Full Text PDFWaterborne free silver can cause osmo- and ionoregulatory disturbances in freshwater organisms. The effects of a short-term exposure to extracellular Ag+ ions on membrane currents were investigated in voltage-clamped defolliculated Xenopus oocytes. At a holding potential of -60 mV, ionic silver (1 microM Ag+) increased inward currents (=I(Ag)) from -8+/-2 nA to -665+/-41 nA (n=74; N=27).
View Article and Find Full Text PDFRespir Physiol Neurobiol
January 2004
Native alveolar epithelium from Xenopus lung was used for electrophysiological Ussing chamber experiments to investigate ion transport regulation. The tissue exhibits a considerable absorption of Na(+) ions and this transepithelial transport is largely up-regulated after treatment of donor animals with ACTH. Extracellular ATP, UTP and adenosine were tested for their regulating effects and all three increased I(sc), which was mainly due to a stimulation of amiloride sensitive Na(+) transport (increase of I(ami) 32% for ATP, 21% for UTP, 25% for adenosine).
View Article and Find Full Text PDFAcid-sensing ion channel (ASIC) 1a subunit is expressed in synapses of central neurons where it contributes to synaptic plasticity. However, whether these channels can conduct Ca(2+) and thereby raise the cytosolic Ca(2+) concentration, [Ca(2+)](c), and possibly alter neuronal physiology has been uncertain. We found that extracellular acidosis opened ASIC1a channels, which provided a pathway for Ca(2+) entry and elevated [Ca(2+)](c) in wild-type, but not ASIC1(-/-), hippocampal neurons.
View Article and Find Full Text PDFPhysiol Biochem Zool
September 2003
Leeches Hirudo medicinalis were exposed to either artificial pond water (APW; 1 mM NaCl) or to high-salinity conditions (HS; 200 mM NaCl) for several days. The aim of the study was to assess whether transepithelial ion conductances in their dorsal integuments were affected by this long-term acclimation. In voltage-clamp experiments using Ussing-type chambers, the transepithelial potential V(T) was clamped to 0 mV, and amiloride-sensitive currents (I(ami)) and total Na(+) transport (I(Na)) were determined.
View Article and Find Full Text PDFBiochim Biophys Acta
January 2003
The effect of glibenclamide on heterologously expressed amiloride-sensitive sodium channels (ENaCs) was investigated in Xenopus oocytes. The ENaC is a heteromer and consists of alpha-, beta- and gamma-subunits and the alpha- and beta-subunits have previously been shown to confer sensitivity to glibenclamide. We coexpressed either colonic rat alpha- (ralpha) or guinea-pig alpha-subunit (gpalpha) with Xenopus betagamma-subunits.
View Article and Find Full Text PDFThe electrogenic Na(+) absorption across tight epithelia from invertebrates follows the principles analog to the mechanisms found in vertebrates. Extracellular Na(+)-ions pass the apical cell membranes through highly selective Na(+) channels and follow an electrochemical gradient which is sustained by the basolateral Na(+)/K(+)-ATPases. These apical Na(+) channels are selectively blocked by amiloride and represent the rate-limiting target for the control of transcellular Na(+) uptake.
View Article and Find Full Text PDFLittle is known about the long-term regulation of epithelial ion transport in invertebrates and the specific mediators involved. For some years, we have been investigating the short-term regulation of transepithelial ion transport across the dorsal integument of the leech Hirudo medicinalis, and we have established a model of Na+ uptake. In the present study, we investigated the effect of long-term acclimation on transintegumental ion transport by adapting leeches to high-salinity conditions.
View Article and Find Full Text PDF