Thermoplastic properties in cellulosic materials can be achieved by opening the glucose rings in cellulose and introducing new functional groups. Using molecular dynamics, we simulated amorphous cellulose and eight modified versions under dry and moist conditions. Modifications included ring openings and functionalization with hydroxy, aldehyde, hydroxylamine, and carboxyl groups.
View Article and Find Full Text PDFEthylcellulose (EC) is a crucial cellulose derivative with widespread applications, particularly in the pharmaceutical industry, where precise property adjustments through chemical modification are imperative. The degree of substitution (DS) and the localization of substituents along the cellulose chains are pivotal factors in this process. However, the impact of the substituent location within the repeating unit of EC remains unexplored.
View Article and Find Full Text PDFThis review focuses on the use of polyolefins in high-voltage direct-current (HVDC) cables and capacitors. A short description of the latest evolution and current use of HVDC cables and capacitors is first provided, followed by the basics of electric insulation and capacitor functions. Methods to determine dielectric properties are described, including charge transport, space charges, resistivity, dielectric loss, and breakdown strength.
View Article and Find Full Text PDFTo broaden the range in structures and properties, and therefore the applicability of sustainable foams based on wheat gluten expanded with ammonium-bicarbonate, we show here how three naturally ocurring multifunctional additives affect their properties. Citric acid yields foams with the lowest density (porosity of ~50%) with mainly closed cells. Gallic acid acts as a radical scavenger, yielding the least crosslinked/ aggregated foam.
View Article and Find Full Text PDFClimate change and plastic pollution are interconnected global challenges. Rising temperatures and moisture alter plastic characteristics, contributing to waste, microplastic generation, and release of hazardous substances. Urgent attention is essential to comprehend and address these climate-driven effects and their consequences.
View Article and Find Full Text PDFTo further our understanding of a thermoplastic arabinoxylan (AX) material obtained through an oxidation-reduction-etherification pathway, the role of the initial arabinose:xylose ratio on the material properties was investigated. Compression molded films with one molar substitution of butyl glycidyl ether (BGE) showed markedly different tensile behaviors. Films made from low arabinose AX were less ductile, while those made from high arabinose AX exhibited elastomer-like behaviors.
View Article and Find Full Text PDFThe amount of disposable nonwovens used today for different purposes have an impact on the plastic waste streams which is built up from several single-use products. A particular problem comes from nonwoven products with "hidden" plastic (such as cellulose mixed with synthetic fibers and/or plastic binders) where the consumers cannot see or expect plastic. We have here developed a sustainable binder based on natural components; wheat gluten (WG) and a polyelectrolyte complex (PEC) made from chitosan, carboxymethyl cellulose and citric acid which can be used with cellulosic fibers, creating a fully biobased nonwoven product.
View Article and Find Full Text PDFJ Chem Theory Comput
November 2023
Electrical conductivity measurements of polyethylene indicate that the semicrystalline structure and morphology influence the conductivity. To include this effect in atomistic charge transport simulations, models that explicitly or implicitly take morphology into account are required. In the literature, charge transport simulations of amorphous polyethylene have been successfully performed using short oligomers to represent the polymer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
Current methods for making and disposing synthetic polymers have been widely pursued and are largely unsustainable. As a part of the solution, the reversible nature of dynamic covalent bonds emerges as an extraordinarily diverse and valuable feature in the development of exotic molecules and extended structures. With these bonds, it should be possible to construct recyclable and mechanically interlocked molecular structures using relatively simple precursors with preorganized geometries.
View Article and Find Full Text PDFGraphene oxide (GO) was used in this study as a template to successfully synthesize silicon oxide (SiO) based 2D-nanomaterials, adapting the same morphological features as the GO sheets. By performing a controlled condensation reaction using low concentrations of GO (<0.5 wt%), the study shows how to obtain 2D-nanoflakes, consisting of GO-flakes coated with a silica precursor that were .
View Article and Find Full Text PDFProteins are promising precursors to be used in production of sustainable materials with properties resembling plastics, although protein modification or functionalization is often required to obtain suitable product characteristics. Here, effects of protein modification were evaluated by crosslinking behavior using high-performance liquid chromatography (HPLC), secondary structure using infrared spectroscopy (IR), liquid imbibition and uptake, and tensile properties of six crambe protein isolates modified in solution before thermal pressing. The results showed that a basic pH (10), especially when combined with the commonly used, although moderately toxic, crosslinking agent glutaraldehyde (GA), resulted in a decrease in crosslinking in unpressed samples, as compared to acidic pH (4) samples.
View Article and Find Full Text PDFThe development of wood-based thermoplastic polymers that can replace synthetic plastics is of high environmental importance, and previous studies have indicated that cellulose-rich fiber containing dialcohol cellulose (ring-opened cellulose) is a very promising candidate material. In this study, molecular dynamics simulations, complemented with experiments, were used to investigate how and why the degree of ring opening influences the properties of dialcohol cellulose, and how temperature and presence of water affect the material properties. Mechanical tensile properties, diffusion/mobility-related properties, densities, glass-transition temperatures, potential energies, hydrogen bonds, and free volumes were simulated for amorphous cellulosic materials with 0-100% ring opening, at ambient and high (150 °C) temperatures, with and without water.
View Article and Find Full Text PDFGlycerol-plasticized wheat gluten was explored for producing soft high-density biofoams using dry upscalable extrusion (avoiding purposely added water). The largest pore size was obtained when using the food grade ammonium bicarbonate (ABC) as blowing agent, also resulting in the highest saline liquid uptake. Foams were, however, also obtained without adding a blowing agent, possibly due to a rapid moisture uptake by the dried protein powder when fed to the extruder.
View Article and Find Full Text PDFNatural, high-performance fibers generally have hierarchically organized nanosized building blocks. Inspired by this, whey protein nanofibrils (PNFs) are assembled into microfibers, using flow-focusing. By adding genipin as a nontoxic cross-linker to the PNF suspension before spinning, significantly improved mechanical properties of the final fiber are obtained.
View Article and Find Full Text PDFOur aim was to understand mechanisms for clustering and cross-linking of gliadins, a wheat seed storage protein type, monomeric in native state, but incorporated in network while processed. The mechanisms were studied utilizing spectroscopy and high-performance liquid chromatography on a gliadin-rich fraction, in vitro produced α-gliadins, and synthetic gliadin peptides, and by coarse-grained modelling, Monte Carlo simulations and prediction algorithms. In solution, gliadins with α-helix structures (dip at 205 nm in CD) were primarily present as monomeric molecules and clusters of gliadins (peaks at 650- and 700-s on SE-HPLC).
View Article and Find Full Text PDFIn this study, the use of potato fruit juice (PFJ) to make plastic films is presented. PFJ is an interesting raw material as it is obtained as a by-product from the potato-starch industry. The films showed uniquely high oxygen barrier properties, and the PFJ material is therefore a potential replacement for the most commonly used, expensive and petroleum-based ethylene-vinyl alcohol copolymer (EVOH) as a barrier layer in future packaging.
View Article and Find Full Text PDFBio-based thermoplastic natural rubber (TPNR) has recently received much attention due to its sustainability. TPNR based on natural rubber (NR), poly(lactic acid) (PLA), thermoplastic starch (TPS), and nano-precipitated calcium carbonate (NPCC) was fabricated using a twin-screw extruder with two different mixing sequences: MI (NPCC was first compounded with PLA) and MII (NPCC was initially compounded with TPS), and then converted to a sheet through cast sheet extrusion. A constant weight ratio of NR:PLA:TPS at 30:40:30 and varying concentrations of NPCC at 0.
View Article and Find Full Text PDFNatural high-performance materials have inspired the exploration of novel materials from protein building blocks. The ability of proteins to self-organize into amyloid-like nanofibrils has opened an avenue to new materials by hierarchical assembly processes. As the mechanisms by which proteins form nanofibrils are becoming clear, the challenge now is to understand how the nanofibrils can be designed to form larger structures with defined order.
View Article and Find Full Text PDFIn this article, we show that enzymatic hydrolysis of a biodegradable polyester (poly(ε-caprolactone)) by Amano Lipase PS in an aqueous (buffer) environment yielded rapidly an excessive number of microplastic particles; merely 0.1 g of poly(ε-caprolactone) film was demonstrated to yield millions of particles. There were also indications of non-enzymatic hydrolysis at the same conditions, but this did not yield any particles within the time frame of the experiment (up to 6 days).
View Article and Find Full Text PDFIn this study, a new method was developed to successfully design sustainable microfibers from wheat gluten proteins using a nonreducing solvent and electrospinning. We explored the morphology by X-ray tomography, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM), protein chemistry and cross-linking by size exclusion-high-performance liquid chromatography (SE-HPLC), and secondary structure by Fourier transform infrared spectroscopy (FT-IR) of fibers containing 15 and 20% of gluten. The impact of heat (130 °C) post-treatment on the polymerization properties of fibers and their absorption performance in different biofluids were also evaluated.
View Article and Find Full Text PDFThe global coronavirus disease 2019 (COVID-19) pandemic has rapidly increased the demand for facemasks as a measure to reduce the rapid spread of the pathogen. Throughout the pandemic, some countries such as Italy had a monthly demand of ca. 90 million facemasks.
View Article and Find Full Text PDFThe global pandemic of COVID-19 has rapidly increased the number of infected cases as well as asymptomatic individuals in many, if not all the societies around the world. This issue increases the demand for accurate and rapid detection of SARS-CoV-2. While accurate and rapid detection is critical for diagnosing SARS-CoV-2, the appropriate course of treatment must be chosen to help patients and prevent its further spread.
View Article and Find Full Text PDFSuperabsorbent polymers (SAP) are a central component of hygiene and medical products requiring high liquid swelling, but these SAP are commonly derived from petroleum resources. Here, we show that sustainable and biodegradable SAP can be produced by acylation of the agricultural potato protein side-stream (PPC) with a non-toxic dianhydride (EDTAD). Treatment of the PPC yields a material with a water swelling capacity of ca.
View Article and Find Full Text PDF