Phys Chem Chem Phys
November 2024
Non-covalent interactions such as hydrogen bonding and π-π stacking are essential types of interactions governing molecular self-assembly. The π-π stacking ability of aromatic rings depends on the electron density of the π orbitals, which is affected by the electron-withdrawing or electron-donating properties of the substituents. We have here studied the effect of hydrogen bonding on the strength of the π-π stacking interactions by calculating the binding energies at the explicitly correlated Møller-Plesset (MP2-F12) perturbation theory level using polarized triple- quality basis sets.
View Article and Find Full Text PDFMolecular self-assembly provides the means for creating large supramolecular structures, extending beyond the capability of standard chemical synthesis. To harness the power of self-assembly, it is necessary to understand its driving forces. A potent method is to exploit self-complementary hydrogen bonding, where a molecule interacts with its own copy by suitable positions of hydrogen-bond donor (D) and acceptor (A) groups.
View Article and Find Full Text PDFGlucose- and sodium-dependent glucose transporters (GLUTs and SGLTs) play vital roles in human biology. Of the 14 GLUTs and 12 SGLTs, the GLUT1 transporter has gained the most widespread recognition because GLUT1 is overexpressed in several cancers and is a clinically valid therapeutic target. We have been pursuing a GLUT1-targeting approach in boron neutron capture therapy (BNCT).
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2021
The magnetically induced current density of an intriguing naphthalene-fused heteroporphyrin has been studied, using the quantum-chemical, gauge-including magnetically induced currents (GIMIC) method. The ring-current strengths and current-density pathways for the heteroporphyrin, its Pd complex, and the analogous quinoline-fused heteroporphyrin provide detailed information about their aromatic properties. The three porphyrinoids have similar current-density pathways and are almost as aromatic as free-base porphyrin.
View Article and Find Full Text PDFHalogenation can be utilized for the purposes of labeling and molecular imaging, providing a means to, e.g., follow drug distribution in an organism through positron emission tomography (PET) or study the molecular recognition events unfolding by nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFBoron neutron capture therapy (BNCT) is a noninvasive binary therapeutic modality applicable to the treatment of cancers. While BNCT offers a tumor-targeting selectivity that is difficult to match by other means, the last obstacles preventing the full harness of this potential come in the form of the suboptimal boron delivery strategies presently used in the clinics. To address these challenges, we have developed delivery agents that target the glucose transporter GLUT1.
View Article and Find Full Text PDFRational design of artificial water-splitting catalysts is central for developing new sustainable energy technology. However, the catalytic efficiency of the natural light-driven water-splitting enzyme, photosystem II, has been remarkably difficult to achieve artificially. Here we study the molecular mechanism of ruthenium-based molecular catalysts by integrating quantum chemical calculations with inorganic synthesis and functional studies.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
November 2020
Spontaneous growth of complexes consisted of a number of individual nanoparticles in a controlled manner, particularly in demanding environments of gas-phase synthesis, is a fascinating opportunity for numerous potential applications. Here, we report the formation of such core-satellite gold nanoparticle structures grown by magnetron sputtering inert gas condensation. Combining high-resolution scanning transmission electron microscopy and computational simulations, we reveal the adhesive and screening role of HO molecules in formation of stable complexes consisted of one nanoparticle surrounded by smaller satellites.
View Article and Find Full Text PDFBoron neutron capture therapy (BNCT) for cancer is on the rise worldwide due to recent developments of in-hospital neutron accelerators which are expected to revolutionize patient treatments. There is an urgent need for improved boron delivery agents, and herein we have focused on studying the biochemical foundations upon which a successful GLUT1-targeting strategy to BNCT could be based. By combining synthesis and molecular modeling with affinity and cytotoxicity studies, we unravel the mechanisms behind the considerable potential of appropriately designed glucoconjugates as boron delivery agents for BNCT.
View Article and Find Full Text PDFMonomethyl auristatin E and monomethyl auristatin F are widely used cytotoxic agents in antibody-drug conjugates (ADCs), a group of promising cancer drugs. The ADCs specifically target cancer cells, releasing the auristatins inside, which results in the prevention of mitosis. The auristatins suffer from a potentially serious flaw, however.
View Article and Find Full Text PDFAcetylated oligosaccharides are common in nature. While they are involved in several biochemical and biological processes, the role of the acetyl groups and the complexity of their migration has largely gone unnoticed. In this work, by combination of organic synthesis, NMR spectroscopy and quantum chemical modeling, we show that acetyl group migration is a much more complex phenomenon than previously known.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) are emerging as a promising class of selective drug delivery systems in the battle against cancer and other diseases. The auristatins monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) appear as the cytotoxic drug in almost half of the state-of-the-art ADCs on the market or in late stage clinical trials. Here, we present the first complete NMR spectroscopic characterisation of these challenging molecules, and investigate their structural properties by a combined NMR and quantum chemical modelling approach.
View Article and Find Full Text PDFComplex I functions as a redox-driven proton pump in aerobic respiratory chains. By reducing quinone (Q), complex I employs the free energy released in the process to thermodynamically drive proton pumping across its membrane domain. The initial Q reduction step plays a central role in activating the proton pumping machinery.
View Article and Find Full Text PDFTudor domains bind to dimethylarginine (DMA) residues, which are post-translational modifications that play a central role in gene regulation in eukaryotic cells. NMR spectroscopy and quantum calculations are combined to demonstrate that DMA recognition by Tudor domains involves conformational selection. The binding mechanism is confirmed by a mutation in the aromatic cage that perturbs the native recognition mode of the ligand.
View Article and Find Full Text PDFThe torsional motion of a molecule composed of two substituted benzene rings, linked by a single bond, is coherently controlled by a pair of strong (3×10^{13} W cm^{-2}), nonresonant (800 nm) 200-fs-long laser pulses-both linearly polarized perpendicular to the single-bond axis. If the second pulse is sent at the time when the two benzene rings rotate toward (away from) each other the amplitude of the torsion is strongly enhanced (reduced). The torsional motion persists for more than 150 ps corresponding to approximately 120 torsional oscillations.
View Article and Find Full Text PDFBy analysing the properties of the electron density in the structurally simple perhalogenated ethanes, X3C-CY3 (X, Y = F, Cl), a previously overlooked non-covalent attraction between halogens attached to opposite carbon atoms is found. Quantum chemical calculations extrapolated towards the full solution of the Schrödinger equation reveal the complex nature of the interaction. When at least one of the halogens is a chlorine, the strength of the interaction is comparable to that of hydrogen bonds.
View Article and Find Full Text PDFMethods Mol Biol
February 2013
This chapter introduces the theory and applications of commonly used methods of electronic structure calculation, with particular emphasis on methods applicable for modelling biomolecular systems. This chapter is sectioned as follows. We start by presenting ab initio methods, followed by a treatment of density functional theory (DFT) and some recent advances in semi-empirical methods.
View Article and Find Full Text PDFWe report here a systematic study on the ability of molecular cages to bind (transition) metals. Starting from the superferrocenophane we investigate the incorporation of first-row transition metal (Sc-Zn) and alkaline-earth metal (Mg, Ca) double cations into these supermetallocenophane (super[5]phane) cages, and compare them with the corresponding metallocenes (Inorg. Chim.
View Article and Find Full Text PDFUV/VIS Electron excitation spectra have been computed for large, realistic model systems of the blue copper protein family. Fully quantum-chemical calculations at the density-functional theory level employing polarized triple-ζ basis sets have been performed on systems of over 120 atoms, without symmetry. Different mutants, with the ligating methionine of the wild type Cu center exchanged for histidine (M121H) and glutamine (M121Q), have been investigated in order to obtain insight about how the influence of the exact surrounding milieu of the Cu-atom affects the computed spectrum.
View Article and Find Full Text PDFWe study how the combination of long and short laser pulses can be used to induce torsion in an axially chiral biphenyl derivative (3,5-difluoro-3',5'-dibromo-4'-cyanobiphenyl). A long, with respect to the molecular rotational periods, elliptically polarized laser pulse produces 3D alignment of the molecules, and a linearly polarized short pulse initiates torsion about the stereogenic axis. The torsional motion is monitored in real-time by measuring the dihedral angle using femtosecond time-resolved Coulomb explosion imaging.
View Article and Find Full Text PDFDalton Trans
September 2011
α-diimine iron complexes have been suggested to catalyse polymerisation via two distinct pathways, depending on the spin state of the iron complex. Here, we study a typical complex of this family, (R'')[N,N]FeCl(2), with [N,N] = Cy-N=CR''-CR''=N-Cy (Cy = cyclohexyl, R'' = PhF (para-fluorophenyl), PhOMe (para-methoxyphenyl), PhNMe(2) (para-dimethylaminophenyl). With R'' = PhF, PhOMe, polymerisation proceeds as a catalytic chain transfer (CCT) mechanism, with R'' = PhNMe(2), the polymerisation follows an atom transfer radical polymerisation (ATRP) pathway.
View Article and Find Full Text PDFCytochrome c oxidase (CcO) is the terminal enzyme of the respiratory chain that catalyzes respiratory reduction of dioxygen (O(2)) to water in all eukaryotes and many aerobic bacteria. CcO, and its homologs among the heme-copper oxidases, has an active site composed of an oxygen-binding heme and a copper center in the vicinity, plus another heme group that donates electrons to this site. In most oxidoreduction enzymes, electron transfer (eT) takes place by quantum-mechanical electron tunneling.
View Article and Find Full Text PDFJ Chem Theory Comput
November 2010
Using a recent high-quality ab initio coupled cluster benchmark set for magnetizabilities, we assess the performance of a set of density functionals, representing different levels of complexity, from the local density approximation (LDA), via generalized gradient approximations (GGA's) to kinetic energy density including meta-GGA's. The effect of self-interaction correction (SIC) is remarkable and, in most cases, leads to a significant error reduction, revealing the sensitivity of magnetizability toward a physically sound exchange-correlation potential.
View Article and Find Full Text PDFCalculations suggest that the previously predicted and experimentally observed cluster WAu(12) can be covered by twelve mu(1)-CO molecules. The symmetry remains I(h) and the binding energy per carbonyl is about 100 kJ mol(-1) up to the last one.
View Article and Find Full Text PDFBy combining the intriguing geometrical properties of two classes of well-established molecules, the metallocenes and the helicenes, we propose a hybrid class of structures-the metallohelicenes. In these, the outer most aryl groups of a specific helicene are glued together by a complexing metal atom. This effectively fixes the chirality of the parent helicene, which otherwise easily undergoes thermal racemization.
View Article and Find Full Text PDF