Publications by authors named "Mika T Westerhausen"

Transition metals like copper (Cu), iron (Fe), and zinc (Zn) are vital for normal central nervous system function and are also linked to neurodegeneration, particularly in the onset and progression of Alzheimer's disease (AD). Their alterations in AD, identified prior to amyloid plaque aggregation, offer a unique target for staging pre-amyloid AD. However, analysing their levels in the brain is extremely challenging, necessitating the development of alternative approaches.

View Article and Find Full Text PDF

Gelatine is the external standard matrix of choice for quantitative biomaging of elements and metal tags in tissue. Its ablation characteristics closely match that of tissue when using 193 and 213 nm lasers, but this has not been demonstrated at 266 nm. With the interest in 266 nm laser ablation systems growing due to the selective ablation of tissue over glass substrates, this gap needed to be investigated.

View Article and Find Full Text PDF

Elemental bioimaging of low abundant elements via laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) is hampered by a lack of sensitivity. Novel solutions for specific applications have been developed, however there is a need for more universal approaches. Here we investigated the addition of N to the ICP carrier gas to increase sensitivity, defined as signal-to-background, for the majority of biologically relevant elements.

View Article and Find Full Text PDF

Wildfires that raged across Australia during the 2019-2020 'Black Summer' produced an enormous quantity of particulate matter (PM) pollution, with plumes that cloaked many urban centres and ecosystems along the eastern seaboard. This has motivated a need to understand the magnitude and nature of PM exposure, so that its impact on both built and natural environments can be more accurately assessed. Here we present the potentially toxic fingerprint of PM captured by building heating, ventilation, and air conditioning filters in Sydney, Australia during the peak of the Wildfires, and from ambient urban emissions one year later (Reference period).

View Article and Find Full Text PDF

Immuno-mass spectrometry imaging uses lanthanide-conjugated antibodies to spatially quantify biomolecules via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The multi-element capabilities allow for highly multiplexed analyses that may include both conjugated antibodies and endogenous metals to reveal relationships between disease and chemical composition. Sample handling is known to perturb the composition of the endogenous elements, but there has been little investigation into the effects of immunolabelling and coverslipping.

View Article and Find Full Text PDF

Mineralised tissue such as teeth can serve as a retrospective, chronological bioindicator of past exposure to toxic metals. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) can be used to determine the presence and spatial distribution of toxic metals in teeth, giving a record of when an exposure occurred. Concentrations of these metals are often determined by a one-point calibration against NIST glass using an equation that requires an internal standard factor that accounts for differences in ablation behaviour between the glass and the tooth.

View Article and Find Full Text PDF

LC-MS/MS method development for native amino acid detection can be problematic due to low ionisation efficiencies, in source fragmentation, potential for cluster ion formation and incorrect application of chromatography techniques. This has led to the majority of the scientific community derivatising amino acids for more sensitive analysis. Derivatisation has several benefits including reduced signal-to-noise ratios, more efficient ionisation, and a change in polarity, allowing the use of reverse phase chromatography.

View Article and Find Full Text PDF

Immuno-mass spectrometry imaging (iMSI) uses laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to determine the spatial expression of biomolecules in tissue sections following immunolabelling with antibodies conjugated to a metal reporter. As with all immunolabelling techniques, the binding efficiency of multiplexed staining can be affected by a number of factors including epitope blocking and other forms of steric hindrance. To date, the effects on the binding of metal-conjugated antibodies to their epitopes in a multiplexed analysis have yet to be quantitatively explored by iMSI.

View Article and Find Full Text PDF

Open-sourced software is a key component of the mass spectrometry imaging field, where transparency in data processing is vital. Imaging of trace elements and immunohistochemically labeled biomolecules in tissue sections is typically performed using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). However, efficient and facile processing of images is hampered by a lack of verifiable and user-friendly software that supports multiple LA-ICP-MS platforms.

View Article and Find Full Text PDF

The cyanobacterial non-protein amino acid α-amino-β-methylaminopropionic acid, more commonly known as BMAA, was first discovered in the seeds of the ancient gymnosperm Cycad circinalis (now Cycas micronesica Hill). BMAA was linked to the high incidence of neurological disorders on the island of Guam first reported in the 1950s. BMAA still attracts interest as a possible causative factor in amyotrophic lateral sclerosis (ALS) following the identification of ALS disease clusters associated with living in proximity to lakes with regular cyanobacterial blooms.

View Article and Find Full Text PDF

Fluorescent nanoparticles are widely utilized in a large range of nanoscale imaging and sensing applications. While ultra-small nanoparticles (size ≤10 nm) are highly desirable, at this size range, their photostability can be compromised due to effects such as intensity fluctuation and spectral diffusion caused by interaction with surface states. In this article, a facile, bottom-up technique for the fabrication of sub-10-nm hexagonal boron nitride (hBN) nanoparticles hosting photostable bright emitters via a catalyst-free hydrothermal reaction between boric acid and melamine is demonstrated.

View Article and Find Full Text PDF

Emerging and promising therapeutic interventions for Duchenne muscular dystrophy (DMD) are confounded by the challenges of quantifying dystrophin. Current approaches have poor precision, require large amounts of tissue, and are difficult to standardize. This paper presents an immuno-mass spectrometry imaging method using gadolinium (Gd)-labeled anti-dystrophin antibodies and laser ablation-inductively coupled plasma-mass spectrometry to simultaneously quantify and localize dystrophin in muscle sections.

View Article and Find Full Text PDF

Group IV color centers in diamond (Si, Ge, Sn, and Pb) have recently emerged as promising candidates for realization of scalable quantum photonics. However, their synthesis in nanoscale diamond is still in its infancy. In this work we demonstrate controlled synthesis of selected group IV defects (Ge and Sn) into nanodiamonds and nanoscale single crystal diamond membranes by microwave plasma chemical vapor deposition.

View Article and Find Full Text PDF

The resolution of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) elemental bioimaging is usually constrained by the diameter of the laser spot size and is often not adequate to explore in situ subcellular distributions of elements and proteins in biological tissue sections. Super-resolution reconstruction is a method typically used for many imaging modalities and combines multiple lower resolution images to create a higher resolution image. Here, we present a super-resolution reconstruction method for LA-ICP-MS imaging by ablating consecutive layers of a biological specimen with offset orthogonal scans, resulting in a 10× improvement in resolution for quantitative measurement of dystrophin in murine muscle fibers.

View Article and Find Full Text PDF

Standard preparation for elemental bio-imaging by laser ablation-inductively coupled plasma-mass spectrometry is confounded by the chemical and physical differences between standard and sample matrices. These differences lead to variable ablation, aerosol generation and transportation characteristics and must be considered when designing matrix-matched standards for reliable calibration and quantification. The ability to precisely mimic sample matrices is hampered due to the complexity and heterogeneity of biological tissue and small variabilities in standard matrices and sample composition often negatively impact accuracy, precision and robustness.

View Article and Find Full Text PDF

PbS submicron crystals were formed by thermolysis of two different lead dithiocarbamate complexes. These precursors were readily synthesized and fully characterized, and in situ synchrotron powder diffraction experiments were performed to characterize their decomposition. The structure and purity of resultant PbS was examined using scanning electron and transmission electron microscopies, powder X-ray diffraction, and infrared spectroscopy.

View Article and Find Full Text PDF

A gold nanoparticle (AuNP) ruthenium phthalocyanine (RuPc) nanocomposite has been synthesised that exhibits high thermal stability. Electrical resistance measurements revealed that the nanocomposite is stable up to ∼320 °C. Examination of the nanocomposite and the RuPc stabiliser complex using thermogravimetric analysis and differential scanning calorimetry show that the remarkable thermal stability is due to the RuPc molecules, which provide an effective barrier to sintering of the AuNPs.

View Article and Find Full Text PDF