Chromosome translocations involving the MLL gene are common rearrangements in leukemia. Such translocations fuse the MLL 5'-region to partner genes in frame, producing MLL-fusions that cause MLL-related leukemia. MLL-fusions activate transcription of target genes such as HoxA cluster and Meis1, but the underlying mechanisms remain to be fully elucidated.
View Article and Find Full Text PDFEradication of chemotherapy-resistant leukemia stem cells is expected to improve treatment outcomes in patients with acute myelogenous leukemia (AML). In a mouse model of AML expressing the fusion, we found that Ring1A and Ring1B, components of Polycomb repressive complex 1, play crucial roles in maintaining AML stem cells. Deletion of and (/) from AML cells diminished self-renewal capacity and induced the expression of numerous genes, including Overexpression of caused AML cells to differentiate into mature cells, whereas knockdown in /-deficient cells inhibited differentiation.
View Article and Find Full Text PDFAcute myeloid leukemia is a clonal malignant disorder derived from a small number of leukemic stem cells (LSCs). Rearrangements of the mixed lineage leukemia (MLL) gene are found in acute myeloid leukemia associated with poor prognosis. The upregulation of Hox genes is critical for LSC induction and maintenance, but is unlikely to support malignancy and the high LSC frequency observed in MLL leukemias.
View Article and Find Full Text PDFThe CALM-AF10 fusion gene, which results from a t(10;11) translocation, is found in a variety of hematopoietic malignancies. Certain HOXA cluster genes and MEIS1 genes are upregulated in patients and mouse models that express CALM-AF10. Wild-type clathrin assembly lymphoid myeloid leukemia protein (CALM) primarily localizes in a diffuse pattern within the cytoplasm, whereas AF10 localizes in the nucleus; however, it is not clear where CALM-AF10 acts to induce leukemia.
View Article and Find Full Text PDFChromosomal translocations that involve the monocytic leukemia zinc finger (MOZ) gene are typically associated with human acute myeloid leukemia (AML) and often predict a poor prognosis. Overexpression of HOXA9, HOXA10, and MEIS1 was observed in AML patients with MOZ fusions. To assess the functional role of HOX upregulation in leukemogenesis by MOZ-TIF2, we focused on bromodomain-PHD finger protein 1 (BRPF1), a component of the MOZ complex that carries out histone acetylation for generating and maintaining proper epigenetic programs in hematopoietic cells.
View Article and Find Full Text PDFLeukemias and other cancers possess self-renewing stem cells that help to maintain the cancer. Cancer stem cell eradication is thought to be crucial for successful anticancer therapy. Using an acute myeloid leukemia (AML) model induced by the leukemia-associated monocytic leukemia zinc finger (MOZ)-TIF2 fusion protein, we show here that AML can be cured by the ablation of leukemia stem cells.
View Article and Find Full Text PDF