Publications by authors named "Mika Sato-Maeda"

Zebrafish have the ability to regenerate skeletal structures, including the fin, skull roof, and jaw. Although fin regeneration proceeds by epimorphic regeneration, it remains unclear whether this process is involved in other skeletal regeneration in zebrafish. Initially in epimorphic regeneration, the wound epidermis covers the wound surface.

View Article and Find Full Text PDF

: Intracranial vertebral artery dissection (VAD) and moyamoya disease (MMD) are rare cerebrovascular diseases, both of which have an ethnic predominance in the East Asian population. Disruption of the internal elastic lamina and subsequent rupture of the medial layer result in intracranial VAD. MMD is a chronic occlusive cerebrovascular disease of unknown etiology, in which the medial layer and internal elastic lamina of the intracranial arteries are significantly compromised.

View Article and Find Full Text PDF

Cerebral venous thrombosis (CVT) is a rare form of cerebral stroke that causes a variety of symptoms, ranging from mild headache to severe morbidity or death in the more severe forms. The use of anti-coagulant or thrombolytic agents is the classical treatment for CVT. However, the development of new therapies for the treatment of the condition has not been the focus.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) is a sphingolipid molecule produced by the action of sphingosine kinases (SphK) on sphingosine. It possesses various intracellular functions through its interactions with intracellular proteins or via its action on five G-protein-coupled cell membrane receptors. Following transient global cerebral ischemia (tGCI), only the CA1 subregion of the hippocampus undergoes apoptosis.

View Article and Find Full Text PDF

Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by a progressive stenosis at the terminal portion of the internal carotid artery and an abnormal vascular network at the base of the brain. Although its etiology is still unknown, intrinsic immune reactions such as autoimmune response has been implicated in the pathogenesis of MMD. Recently, the RING finger protein 213 (RNF213) was found to be an important risk gene for MMD, and is predominantly expressed in blood cells and the spleen.

View Article and Find Full Text PDF

The RING finger protein 213 (RNF213) is an important susceptibility gene for moyamoya disease (MMD) and is also implicated in other types of intracranial major artery stenosis/occlusion (ICAS); however, the role of RNF213 in the development of ICAS including MMD is unclear. The constitutive expression of the RNF213 gene is relatively weak in brain tissue, while information regarding the expression patterns of the RNF213 gene under cerebral ischemia, which is one of characteristic pathologies associated with ICAS, is currently limited. Our objective was to address this critical issue, and we investigated Rnf213 mRNA expression in rat brains after 5 minutes of transient global cerebral ischemia (tGCI) by occluding the common carotid arteries coupled with severe hypotension.

View Article and Find Full Text PDF

Background: The de novo development of moyamoya disease (MMD) in adults is extremely rare, with only 2 cases being previously reported. Furthermore, the mechanisms underlying the progression of adult MMD have not been elucidated yet.

Case Report: A transient ischemic attack occurred in a 46-year-old woman, owing to progressive MMD.

View Article and Find Full Text PDF

Moyamoya disease (MMD) is a chronic, occlusive cerebrovascular disease with an unknown etiology and is characterized by an abnormal vascular network at the base of the brain. Recent studies identified the RNF213 gene (RNF213) as an important susceptibility gene for MMD; however, the mechanisms underlying the RNF213 abnormality related to MMD have not yet been elucidated. We previously reported that Rnf213-deficient mice and Rnf213 p.

View Article and Find Full Text PDF

Although recent genome-wide and locus-specific association studies revealed that the RING finger protein 213 (RNF213) gene is an important susceptibility gene for moyamoya disease (MMD), the exact mechanism by which the genetic alteration of RNF213 contributes to the development of MMD has not yet been elucidated. A quantitative reverse transcription polymerase chain reaction (PCR) analysis revealed that the constitutive expression of the RNF213 gene was very low in adult and embryonic brain tissue. However, information regarding the temporal and spatial expression patterns of the RNF213 gene under the condition of cerebral ischemia, which is one of characteristic pathologies associated with MMD, is currently limited.

View Article and Find Full Text PDF

Moyamoya disease (MMD) is a chronic, occlusive cerebrovascular disease with an unknown etiology. Recent genome-wide and locus-specific association studies identified the RNF213 gene (RNF213) as an important susceptibility gene of MMD among East Asian populations; however, the mechanism by which an abnormality in RNF213 leads to MMD has not yet been elucidated. Therefore, we herein generated Rnf213-knock-in mice (RNF213-KI) expressing a missense mutation in mouse Rnf213, p.

View Article and Find Full Text PDF

The heat shock promoter is useful for regulating transgene expression in small water-living organisms. In zebrafish embryos, downstream gene expression can be greatly induced throughout the body by raising the temperature from 28.5 degrees C to 38.

View Article and Find Full Text PDF

In zebrafish embryos, each myotome is typically innervated by three primary motoneurons (PMNs): the caudal primary (CaP), middle primary (MiP) and rostral primary (RoP). PMN axons first exit the spinal cord through a single exit point located at the midpoint of the overlying somite, which is formed beneath the CaP cell body and is pioneered by the CaP axon. However, the placement of CaP cell bodies with respect to corresponding somites is poorly understood.

View Article and Find Full Text PDF

In order for axons to reach their proper targets, both spatiotemporal regulation of guidance molecules and stepwise control of growth cone sensitivity to guidance molecules is required. Here, we show that, in zebrafish, Sema3a1, a secreted class 3 semaphorin, plays an essential role in guiding the caudal primary (CaP) motor axon that pioneers the initial region of the motor pathway. The expression pattern of Sema3a1 suggests that it delimits the pioneer CaP axons to the initial, common pathway via a repulsive action, but then CaP axons become insensitive to Sema3a1 beyond the common pathway.

View Article and Find Full Text PDF

Semaphorins are a large family of secreted and cell surface molecules that guide neural growth cones to their targets during development. Some semaphorins are expressed in cells and tissues beyond the nervous system suggesting the possibility that they function in the development of non-neural tissues as well. In the trunk of zebrafish embryos endothelial precursors (angioblasts) are located ventral and lateral to the somites.

View Article and Find Full Text PDF