Purpose: Electronic portal imaging devices (EPIDs) have been widely utilized for patient-specific quality assurance (PSQA) and their use for transit dosimetry applications is emerging. Yet there are no specific guidelines on the potential uses, limitations, and correct utilization of EPIDs for these purposes. The American Association of Physicists in Medicine (AAPM) Task Group 307 (TG-307) provides a comprehensive review of the physics, modeling, algorithms and clinical experience with EPID-based pre-treatment and transit dosimetry techniques.
View Article and Find Full Text PDFBackground And Purpose: dosimetry with electronic portal imaging devices (EPIDs) allows for dosimetric treatment verification in external beam radiotherapy by comparing EPID-reconstructed dose distributions (EPID_IA) with dose distributions calculated with the treatment planning system in water-equivalent geometries. The main drawback of the method is the inability to estimate the dose delivered to the patient. In this study, an extension to the method is presented to allow for patient dose reconstruction in the presence of inhomogeneities.
View Article and Find Full Text PDFBackground And Purpose: Dosimetric patient-Specific Quality Assurance (PSQA) data contain in addition to cases with alerts, many cases without alerts. The aim of this study was to present a procedure to investigate long-term trend analysis of the complete set of PSQA data for the presence of site-specific deviations to reduce underlying systematic dose uncertainties.
Materials And Methods: The procedure started by analysing a large set of prostate Volumetric Modulated Arc Therapy (VMAT) PSQA data obtained by comparing 3D electronic portal image device (EPID)_based dosimetry measurements with dose values predicted by the Treatment Planning System (TPS).
Background And Purpose: The Unity MR-Linac is equipped with an EPID, the images from which contain information about the dose delivered to the patient. The purpose of this study was to introduce a framework for the automatic dosimetric verification of online adapted plans using 3D EPID dosimetry and to present the obtained dosimetric results.
Materials And Methods: The framework was active during the delivery of 1207 online adapted plans corresponding to 127 clinical IMRT treatments (74 prostate, 19 rectum, 19 liver and 15 lymph node oligometastases).
External beam radiotherapy with photon beams is a highly accurate treatment modality, but requires extensive quality assurance programs to confirm that radiation therapy will be or was administered appropriately. In vivo dosimetry (IVD) is an essential element of modern radiation therapy because it provides the ability to catch treatment delivery errors, assist in treatment adaptation, and record the actual dose delivered to the patient. However, for various reasons, its clinical implementation has been slow and limited.
View Article and Find Full Text PDFWe developed and validated a dedicated small field back-projection portal dosimetry model for pretreatment andverification of stereotactic plans entailing small unflattened photon beams. For this purpose an aSi-EPID was commissioned as a small field dosimeter. Small field output factors for 6 MV FFF beams were measured using the PTW microDiamond detector and the Agility 160-leaf MLC from Elekta.
View Article and Find Full Text PDFPurpose: In vivo EPID dosimetry is meant to trigger on relevant differences between delivered and planned dose distributions and should therefore be sensitive to changes in patient position and patient anatomy. Three-dimensional (3D) EPID back-projection algorithms can use either the planning computed tomography (CT) or the daily patient anatomy as patient model for dose reconstruction. The purpose of this study is to quantify the effect of the choice of patient model on the performance of in vivo 3D EPID dosimetry to detect patient-related variations.
View Article and Find Full Text PDFPurpose: Despite their availability and simplicity of use, Electronic Portal Imaging Devices (EPIDs) have not yet replaced detector arrays for patient specific QA in 3D. The purpose of this study is to perform a large scale dosimetric evaluation of transit and non-transit EPID dosimetry against absolute dose measurements in 3D.
Methods: After evaluating basic dosimetric characteristics of the EPID and two detector arrays (Octavius 1500 and Octavius 1000 ), 3D dose distributions for 68 VMAT arcs, and 10 IMRT plans were reconstructed within the same phantom geometry using transit EPID dosimetry, non-transit EPID dosimetry, and the Octavius 4D system.
Purpose: To assess the sensitivity of various EPID dosimetry alert indicators to patient-related variations and to determine alert threshold values that ensure excellent error detectability.
Methods: Our virtual dose reconstruction method uses in air EPID measurements to calculate virtual 3D dose distributions within a CT data set. Patient errors are introduced by transforming the plan-CT into an error-CT data set.
Purpose: To investigate the effectiveness of an EPID-based 3D transit dosimetry system in detecting deliberately introduced errors during VMAT delivery.
Methods: An Alderson phantom was irradiated using four VMAT treatment plans (one prostate, two head-and-neck and one lung case) in which delivery, thickness and setup errors were introduced. EPID measurements were performed to reconstruct 3D dose distributions of "error" plans, which were compared with "no-error" plans using the mean gamma (γ), near-maximum gamma (γ) and the difference in isocenter dose (ΔD) as metrics.
Electronic portal imaging devices (EPIDs) are frequently used in external beam radiation therapy for dose verification purposes. The aim of this study was to investigate the dose-response characteristics of the EPID in the Unity MR-linac (Elekta AB, Stockholm, Sweden) relevant for dosimetric applications under clinical conditions. EPID images and ionization chamber (IC) measurements were used to study the effects of the magnetic field, the scatter generated in the MR housing reaching the EPID, and inhomogeneous attenuation from the MR housing.
View Article and Find Full Text PDFIn external beam radiotherapy, electronic portal imaging devices (EPIDs) are frequently used for pre-treatment and for in vivo dose verification. Currently, various MR-guided radiotherapy systems are being developed and clinically implemented. Independent dosimetric verification is highly desirable.
View Article and Find Full Text PDFPurpose: At our institute, a transit back-projection algorithm is used clinically to reconstruct in vivo patient and in phantom 3D dose distributions using EPID measurements behind a patient or a polystyrene slab phantom, respectively. In this study, an extension to this algorithm is presented whereby in air EPID measurements are used in combination with CT data to reconstruct 'virtual' 3D dose distributions. By combining virtual and in vivo patient verification data for the same treatment, patient-related errors can be separated from machine, planning and model errors.
View Article and Find Full Text PDFBackground: Radiotherapy technology continues to advance and the expectation of improved outcomes requires greater accuracy in various radiotherapy steps. Different factors affect the overall accuracy of dose delivery. Institutional comprehensive quality assurance (QA) programs should ensure that uncertainties are maintained at acceptable levels.
View Article and Find Full Text PDFPurpose: Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e.
View Article and Find Full Text PDFPurpose: To assess the usefulness of electronic portal imaging device (EPID)-based 3-dimensional (3D) transit dosimetry in a radiation therapy department by analyzing a large set of dose verification results.
Methods And Materials: In our institution, routine in vivo dose verification of all treatments is performed by means of 3D transit dosimetry using amorphous silicon EPIDs. The total 3D dose distribution is reconstructed using a back-projection algorithm and compared with the planned dose distribution using 3D gamma evaluation.
Background And Purpose: Target dose verification for VMAT treatments of head-and-neck (H&N) cancer using 3D in vivo EPID dosimetry is expected to be affected by daily anatomical changes. By including these anatomical changes through cone-beam CT (CBCT) information, the magnitude of this effect is investigated.
Materials And Methods: For 20 VMAT-treated H&N cancer patients, all plan-CTs (pCTs), 633 CBCTs and 1266 EPID movies were used to compare four dose distributions per fraction: treatment planning system (TPS) calculated dose and EPID reconstructed in vivo dose, both determined using the pCT and using the CBCT.
Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the situation without wedge is used. A possible solution would be to consider a wedged beam as another photon beam quality requiring separate beam modeling of the dose calculation algorithm.
View Article and Find Full Text PDFPurpose: To relate the results of γ-analysis and dose-volume histogram (DVH) analysis of the PTV for detecting dose deviations with in vivo dosimetry for two treatment sites.
Methods And Materials: In vivo 3D dose distributions were reconstructed for 722 fractions of 200 head-and-neck (H&N) VMAT treatments and 183 fractions of 61 lung IMRT plans. The reconstructed and planned dose distributions in the PTV were compared using (a) the γ-distribution and (b) the differences in D2, D50 and D98 between the two dose distributions.
At our institution EPID (electronic portal imaging device) dosimetry is routinely applied to perform in vivo dose verification of all patient treatments with curative intent since January 2008. The major impediment of the method has been the amount of work required to produce and inspect the in vivo dosimetry reports (a time-consuming and labor-intensive process). In this paper we present an overview of the actions performed to implement an automated in vivo dosimetry solution clinically.
View Article and Find Full Text PDFIn vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT.
View Article and Find Full Text PDFPurpose: At the Netherlands Cancer Institute--Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment.
View Article and Find Full Text PDFPurpose: Electronic portal imaging devices (EPIDs) are increasingly used for IMRT dose verification, both pretreatment and in vivo. In this study, an earlier developed backprojection model has been modified to avoid the need for patient-specific transmission measurements and, consequently, leads to a faster procedure.
Methods: Currently, the transmission, an essential ingredient of the backprojection model, is estimated from the ratio of EPID measurements with and without a phantom/patient in the beam.
The potential for detrimental incidents and the ever increasing complexity of patient treatments emphasize the need for accurate dosimetric verification in radiotherapy. For this reason, all curative treatments are verified, either pretreatment or in vivo, by electronic portal imaging device (EPID) dosimetry in the Radiation Oncology Department of The Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands. Since the clinical introduction of the method in January 2005 until August 2009, treatment plans of 4337 patients have been verified.
View Article and Find Full Text PDF