Multiplexed lateral flow assays (LFAs) offer efficient on-site testing by simultaneously detecting multiple biomarkers from a single sample, reducing costs. In cancer diagnostics, where biomarkers can lack specificity, multiparameter detection provides more information at the point-of-care. Our research focuses on epithelial ovarian cancer (EOC), where STn-glycosylated forms of CA125 and CA15-3 antigens can better discriminate cancer from benign conditions.
View Article and Find Full Text PDFThe development of sensitive point-of-care (POC) assay platforms is of interest for reducing the cost and time of diagnostics. Lateral flow assays (LFAs) are the gold standard for POC systems, but their sensitivity as such is inadequate, for example, in the case of cardiac diagnostics. The performance can be improved by incorporating different steps, such as pre-incubation to prolong the interaction time between sample and reporter for immunocomplex formation, and washing steps for background reduction.
View Article and Find Full Text PDFUpconverting nanoparticles are attractive reporters for immunoassays, because their high specific activity and lack of autofluorescence background enable their detection at extremely low concentrations. However, the sensitivity achieved with heterogeneous sandwich immunoassays using nanoparticle reporters is generally limited by the nonspecific binding of nanoparticle antibody conjugates to solid supports. In this study, we characterized plasma components associated with elevated nonspecific binding of poly(acrylic acid)-coated upconverting nanoparticles in heterogeneous two-step sandwich immunoassays.
View Article and Find Full Text PDFBackground And Aims: Upconverting nanoparticles (UCNPs) are attractive reporters for immunoassays due to their excellent detectability. Assays sensitive enough to measure baseline level of cardiac troponin I cTnI in healthy population could be used to identify patients at risk for cardiovascular disease. Aiming for a cTnI assay of such sensitivity, the surface chemistry of the nanoparticles as well as the assay reagents and the protocol were optimized for monodispersity of the UCNP antibody conjugates (Mab UCNPs) and to minimize their non-specific interactions with the solid support.
View Article and Find Full Text PDF