For adipose stromal/stem cell (ASCs)-based immunomodulatory therapies, it is important to study how donor characteristics, such as obesity and type 2 diabetes (T2D), influence ASCs efficacy. Here, ASCs were obtained from 2 groups, donors with T2D and obesity (dASCs) or nondiabetic donors with normal-weight (ndASCs), and then cultured with anti-CD3/CD28-stimulated allogeneic CD4 T cells. ASCs were studied for the expression of the immunomodulators CD54, CD274, and indoleamine 2, 3 dioxygenase 1 (IDO) in inflammatory conditions.
View Article and Find Full Text PDFBackground: Adipose stromal/stem cells (ASCs) are promising candidates for future clinical applications. ASCs have regenerative capacity, low immunogenicity, and immunomodulatory ability. The success of future cell-based therapies depends on the appropriate selection of donors.
View Article and Find Full Text PDFUnlabelled: Microglia are involved in the post-stroke immunomodulation of brain plasticity, repair, and reorganization. Here, we evaluated whether adipose-tissue-derived mesenchymal stem cells (ADMSCs) and/or rehabilitation improve behavioral recovery by modulating long-term perilesional inflammation and creating a recovery-permissive environment in a rat model of ischemic stroke.
Methods: A two-way mixed lymphocyte reaction was used to assess the immunomodulatory capacity of ADMSCs in vitro.
Stroke is a devastating neurological disorder and one of the leading causes of mortality and disability. To understand the cellular and molecular mechanisms of stroke and to develop novel therapeutic approaches, two different human cell-based stroke models were established using oxygen-glucose deprivation (OGD) conditions. In addition, the effect of adipose stem cells (ASCs) on OGD-induced injury was studied.
View Article and Find Full Text PDFStroke is a leading global cause of adult disability. As the population ages as well as suffers co-morbidities, it is expected that the stroke burden will increase further. There are no established safe and effective restorative treatments to facilitate a good functional outcome in stroke patients.
View Article and Find Full Text PDFAdipose tissue is an attractive stem cell source for soft and bone tissue engineering applications and stem cell therapies. The adipose-derived stromal/stem cells (ASCs) have a multilineage differentiation capacity that is regulated through extracellular signals. The cellular events related to cell adhesion and cytoskeleton have been suggested as central regulators of differentiation fate decision.
View Article and Find Full Text PDFThe surgical reconstruction of functional neovagina is challenging and susceptible to complications. Therefore, developing tissue engineering-based treatment methods for vaginal defects is important. Our aim was to develop and test a novel supercritical carbon dioxide foamed poly-l-lactide-co-ɛ-caprolactone (scPLCL) scaffold for vaginal reconstruction.
View Article and Find Full Text PDFDespite the good performance of silicate bioactive glasses in bone regeneration, there is considerable potential to enhance their properties by chemical modifications. In this study, S53P4-based borosilicate glasses were synthesized and their dissolution profile was studied in simulated body fluid by assessing pH change, ion release and conversion to hydroxyapatite. The viability, proliferation, attachment, osteogenesis and endothelial marker expression of human adipose stem cells (hASCs) was evaluated upon direct culture on glass discs and in the extract medium.
View Article and Find Full Text PDFAnal incontinence is a devastating condition that significantly reduces the quality of life. Our aim was to evaluate the effect of human adipose stem cell (hASC) injections in a rat model for anal sphincter injury, which is the main cause of anal incontinence in humans. Furthermore, we tested if the efficacy of hASCs could be improved by combining them with polyacrylamide hydrogel carrier, Bulkamid.
View Article and Find Full Text PDFUnlabelled: Bone morphogenetic protein-2 (BMP-2) is a growth factor used to stimulate bone regeneration in clinical applications. However, there are contradicting reports on the functionality of BMP-2 in human adipose stem cells (hASCs), which are frequently used in tissue engineering. In this study, we analyzed the effects of BMP-2 on SMAD1/5 signaling, proliferation, and differentiation in hASCs.
View Article and Find Full Text PDFIntroduction: Adipose tissue is an attractive and abundant source of multipotent stem cells. Human adipose stem cells (ASCs) have shown to have therapeutic relevancy in diverse clinical applications. Nevertheless, expansion of ASCs is often necessary before performing clinical studies.
View Article and Find Full Text PDFThe effects of bioactive glass S53P4 or beta-tricalcium phosphate; and bone morphogenetic proteins bone morphogenetic protein-2, bone morphogenetic protein-7, or bone morphogenetic protein-2 + 7 on osteogenic differentiation of human adipose stem cells were compared in control medium, osteogenic medium, and bone morphogenetic protein-supplemented osteogenic medium to assess suitability for bone tissue engineering. Cell amount was evaluated with qDNA measurements; osteogenic differentiation using marker gene expression, alkaline phosphate activity, and angiogenic potential was measured by vascular endothelial growth factor expression. As compared to beta-tricalcium phosphate, cell amount was significantly greater for bioactive glass in control medium after 7 days and in osteogenic medium after 14 days, and alkaline phosphate activity was always significantly greater for bioactive glass in control medium.
View Article and Find Full Text PDF