Publications by authors named "Mihue Jang"

Article Synopsis
  • Natural killer (NK) cells, which play a key role in fighting tumors, are hindered by transforming growth factor β1 (TGFβ1) in the tumor environment, leading to ineffective cancer therapies and poorer patient outcomes.
  • The study develops a new type of self-activating chimeric antigen receptor (CAR)-NK cells that can block TGFβ1 signaling by releasing a peptide called P6, specifically targeting pancreatic tumors.
  • P6 disrupts the negative signaling from TGFβ1 in NK cells, improving their function and ability to attack pancreatic tumors, showing promising results in both lab cultures and animal models, thus advancing cancer immunotherapy.
View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer treatment. CARs are activated at the immunological synapse (IS) when their single-chain variable fragment (scFv) domain engages with an antigen, allowing them to directly eliminate cancer cells. Here, an innovative IS biosensor based on fluorescence resonance energy transfer (FRET) for the real-time assessment of CAR-IS architecture and signaling competence is presented.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells are a promising immunotherapy for solid cancers; however, their effectiveness against pancreatic cancer is limited by the immunosuppressive tumor microenvironment. In particular, low NK cell infiltration poses a major obstacle that reduces cytotoxicity. The current study aimed to enhance the tumor-homing capacity of CAR-NK cells by targeting the chemokine-chemokine receptor axis between NK and pancreatic cancer cells.

View Article and Find Full Text PDF

Anti-epidermal growth factor receptor (EGFR) antibody, cetuximab, therapy has significantly improved the clinical outcomes of patients with colorectal cancer, but the response to cetuximab can vary widely among individuals. We thus need strategies for predicting the response to this therapy. However, the current methods are unsatisfactory in their predictive power.

View Article and Find Full Text PDF

Background: Cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) contribute to an impaired functionality of natural killer (NK) cells that have emerged as a promising therapeutic modality. The interaction between CAFs and NK cells within the TME exerts major inhibitory effects on immune responses, indicating CAF-targeted therapies as potential targets for effective NK-mediated cancer killing.

Methods: To overcome CAF-induced NK dysfunction, we selected an antifibrotic drug, nintedanib, for synergistic therapeutic combination.

View Article and Find Full Text PDF

Despite the essential roles of natural killer (NK) cells in cancer treatment, the physical barrier and biological cues of the tumor microenvironment (TME) may induce NK cell dysfunction, causing their poor infiltration into tumors. The currently available two-dimensional (2D) cancer-NK co-culture systems hardly represent the characteristics of TME and are not suitable for tracking the infiltration of immune cells and assessing the efficacy of immunotherapy. This study aims to monitor NK-mediated cancer cell killing using a polymer thin film-based, 3D assay platform that contains highly tumorigenic cancer spheroids.

View Article and Find Full Text PDF

Despite the important roles of dendritic cells (DCs) in airway allergies, current therapeutic strategies such as drugs, allergen immunotherapy and biologics haven't been targeted at them. In this study, we established a promising DC-based therapeutic approach for the alleviation of allergic rhinitis (AR)-associated allergic reactions, using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated targeted gene disruption. RNA sequencing analysis revealed upregulation of vacuolar protein sorting 37 B (VPS37B) in AR-derived DCs, indicating a novel molecular target.

View Article and Find Full Text PDF

Membrane receptors overexpressed in diseased states are considered novel therapeutic targets. However, the single targeting approach faces several fundamental issues, such as poor efficacy, resistance, and toxicity. Here, we report a dual-targeting strategy to enhance anti-cancer efficacy via synergistic proximity interactions between therapeutics and two receptor proteins.

View Article and Find Full Text PDF

The emergence of T-cell engineering with chimeric antigen receptors (CARs) has led to attractive therapeutics; however, autologous CAR-T cells are associated with poor clinical outcomes in solid tumors because of low safety and efficacy. Therefore, the aim of our study was to develop a CAR therapy with enhanced cytotoxicity against solid cancer using allogeneic NK cells. In this study, we engineered "off-the-shelf" NK cells to redirect them towards pancreatic ductal adenocarcinoma (PDAC) by improving their target-specific cytotoxic potential.

View Article and Find Full Text PDF

p53 is activated in response to cellular stresses such as DNA damage, oxidative stress, and especially ribosomal stress. Although the regulations of p53 by E3 ligase and deubiquitinating enzymes (DUBs) have been described, the cellular roles of DUB associated with ribosomal stress have not been well studied. In this study, we report that Ubiquitin Specific Protease 47 (USP47) functions as an important regulator of p53.

View Article and Find Full Text PDF

Identification of tumor antigens that induce cytotoxic T lymphocytes (CTLs) is crucial for cancer-vaccine development. Despite their predictive ability, current algorithmic approaches and human leukocyte antigen (HLA)-peptidomic analysis allow limited selectivity. Here, we optimized a method to rapidly screen and identify highly immunogenic epitopes that trigger CTL responses.

View Article and Find Full Text PDF

SMURF2 is a member of the HECT family of E3 ubiquitin ligases that have important roles as a negative regulator of transforming growth factor-β (TGF-β) signaling through ubiquitin-mediated degradation of TGF-β receptor I. However, the regulatory mechanism of SMURF2 is largely unknown. In this study, we identified that micro(mi)R-195 and miR-497 putatively target SMURF2 using several target prediction databases.

View Article and Find Full Text PDF
Article Synopsis
  • Genetically engineered cells using the CRISPR/Cas9 system show promise for enhancing cancer immunotherapy by altering immune-suppressive mechanisms in tumors.
  • A new carrier-free multiplexed gene editing method improves the editing efficiency of suspension cancer cells, allowing effective alteration of multiple genes simultaneously.
  • By targeting and disrupting PD-L1 and PD-L2, this platform significantly boosts the immune response of CD8 T cells against cancer, demonstrating potential for clinical applications in cancer treatment.
View Article and Find Full Text PDF

Cas9 ribonucleoprotein (RNP)-mediated delivery has emerged as an ideal approach for in vivo applications. However, the delivery of Cas9 RNPs requires electroporation or lipid- or cationic-reagent-mediated transfection. Here, we developed a carrier-free Cas9 RNP delivery system for robust gene editing in vivo.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) with self-renewal abilities endorse cellular heterogeneity, resulting in metastasis and recurrence. However, there are no promising therapeutics directed against CSCs. Herein, we found that miR-503-3p inhibited tumor growth via the regulation of CSC proliferation and self-renewal.

View Article and Find Full Text PDF

Multipotent stem cells have the capacity to generate terminally differentiated cell types of each lineage; thus, they have great therapeutic potential for a wide variety of diseases. The most widely available stem cells are derived from human tissues, and their use for therapeutic application is limited by their high cost and low productivity. Herein, we report that conditioned media of mesenchymal stem cells (MSCs) isolated from deer antlers enhanced tissue regeneration through paracrine action via a combination of secreted growth factors and cytokines.

View Article and Find Full Text PDF

An intracellular delivery system for CRISPR/Cas9 is crucial for its application as a therapeutic genome editing technology in a broad range of diseases. Current vehicles carrying CRISPR/Cas9 limit in vivo delivery because of low tolerance and immunogenicity; thus, the in vivo delivery of genome editing remains challenging. Here, we report that cancer-derived exosomes function as natural carriers that can efficiently deliver CRISPR/Cas9 plasmids to cancer.

View Article and Find Full Text PDF

The enzymatic process of rolling circle transcription (RCT) enables self-assembly of multimeric RNAi structures from a circular DNA template. The self-assembled RNAi structures can be manipulated easily by simple base pairing rules with short DNA fragments for constructing multifunctional nanoparticles in the field of nanomedicine. Here we describe the method to generate multifunctional RNAi nanoparticles applicable in nanomedicine.

View Article and Find Full Text PDF

Incorporating multiple copies of two RNAi molecules into a single nanostructure in a precisely controlled manner can provide an efficient delivery tool to regulate multiple gene pathways in the relation of mutual dependence. Here, we show a RNA nanotechnology platform for a two-in-one RNAi delivery system to contain polymeric two RNAi molecules within the same RNA nanoparticles, without the aid of polyelectrolyte condensation reagents. As our RNA nanoparticles lead to the simultaneous silencing of two targeted mRNAs, of which biological functions are highly interdependent, combination therapy for multi-drug resistance cancer cells, which was studied as a specific application of our two-in-one RNAi delivery system, demonstrates the efficient synergistic effects for cancer therapy.

View Article and Find Full Text PDF

It is challenging to design rolling circle amplification (RCA) for tumor-selective delivery of drugs. Here, we devise a doxorubicin nanocarrier composed of RCA products, cholesterol-DNA, and folate-DNA conjugates. RCA products, designed to contain tandem repeats of short hairpin DNA, employ the repeated sequences complementary to both DNA conjugates, and thus RCA products/cholesterol-DNA/folate-DNA complexes, generated via sequential base pairing processes, acquire the amphiphilic properties that facilitate self-assembly into the highly condensed nanoparticles (RCA nanoparticles).

View Article and Find Full Text PDF

For therapeutic applications of siRNA, there are technical challenges with respect to targeted and systemic delivery. We here report a new siRNA carrier, RNAtr NPs, in a way that multiple tandem copies of RNA hairpins as a result of rolling circle transcription (RCT) can be readily adapted in tumour-targeted and systemic siRNA delivery. RNAtr NPs provide a means of condensing large amounts of multimeric RNA transcripts into the compact nanoparticles, especially without the aid of polycationic agents, and thus reduce the risk of immunogenicity and cytotoxicity by avoiding the use of synthetic polycationic reagents.

View Article and Find Full Text PDF

In nature, there exist a wide range of dsRNA-binding proteins that have different binding modes for small interfering RNA (siRNA) as well as structural differences, and some of these proteins have potential as effective siRNA delivery carriers. In order to deliver siRNA into cancer cells, a dsRNA-binding 2b protein derived from Tomato aspermy virus was genetically modified by fusing the integrin-targeting RGD peptide to its C-terminus, and biosynthesized. The resulting 2b-RGD protein possesses distinct characteristics favorable for biomedical applications of siRNA: (i) high affinity for siRNA, (ii) siRNA protection against RNases in serum, (iii) low cytotoxicity compared to the polycationic polymers often employed in conventional siRNA carriers, (iv) specific binding to integrins on cancer cells, and the ability to pass through the cell membrane via endocytosis, and (v) the ability to facilitate cytosolic release of siRNA.

View Article and Find Full Text PDF

Anticancer therapeutics delivering exogenous siRNA have been explored to suppress the tumor-associated genes, but several limitations of siRNA delivery such as tumor-targeted delivery, controlled siRNA release at the sites of interest, or instabilities of siRNA in physiological fluids should be preferentially addressed for its clinical applications. As an attempt to meet these criteria, we designed a supramolecular assembly, which was composed of cholesterol-bearing hyaluronic acid (HA-Chol) conjugates and 2b RNA-binding protein (2b)/siRNA complexes. In contrast to the traditional siRNA polyplexes using electrostatic interactions, HA-Chol nanoparticles, as a results of self-assembly of HA-Chol conjugates, provide the hydrophobic core that acts as the container for 2b protein/siRNA complexes, where a high affinity of 2b protein for siRNA could neutralize the negative-charged siRNA.

View Article and Find Full Text PDF

ADP-ribosylation factor1 (Arf1), a member of the small GTP-binding proteins, plays a pivotal role in protein trafficking to multiple organelles. In its GDP-bound form, Arf1 is recruited from the cytosol to organelle membranes, where it functions in vesicle-mediated protein trafficking. However, the mechanism of Arf1-GDP recruitment remains unknown.

View Article and Find Full Text PDF