Given the fast-increasing prevalence of obesity and its comorbidities, it would be critical to improve our understanding of the cell-type level differences between the two key human adipose tissue depots, subcutaneous (SAT) and visceral adipose tissue (VAT), in their depot-specific contributions to cardiometabolic health. We integrated cell-type level RNA- and ATAC-seq data from human SAT and VAT biopsies and cell-lines to comprehensively elucidate transcriptomic, epigenetic, and genetic differences between the two fat depots. We identify cell-type marker genes for tissue specificity and functional enrichment, and show through genome-wide association study (GWAS) and partitioned polygenic risk score (PRS) enrichment analyses that the marker genes upregulated in SAT adipocytes have more prominent roles in abdominal obesity than those of VAT.
View Article and Find Full Text PDFHuman subcutaneous adipose tissue (SAT) contains a diverse array of cell-types; however, the epigenomic landscape among the SAT cell-types has remained elusive. Our integrative analysis of single-cell resolution DNA methylation and chromatin conformation profiles (snm3C-seq), coupled with matching RNA expression (snRNA-seq), systematically cataloged the epigenomic, 3D topology, and transcriptomic dynamics across the SAT cell-types. We discovered that the SAT CG methylation (mCG) landscape is characterized by pronounced hyper-methylation in myeloid cells and hypo-methylation in adipocytes and adipose stem and progenitor cells (ASPCs), driving nearly half of the 705,063 detected differentially methylated regions (DMRs).
View Article and Find Full Text PDF