In this study, we present a deep-learning-based multimodal classification method for lymphoma diagnosis in digital pathology, which utilizes a whole slide image (WSI) as the primary image data and flow cytometry (FCM) data as auxiliary information. In pathological diagnosis of malignant lymphoma, FCM serves as valuable auxiliary information during the diagnosis process, offering useful insights into predicting the major class (superclass) of subtypes. By incorporating both images and FCM data into the classification process, we can develop a method that mimics the diagnostic process of pathologists, enhancing the explainability.
View Article and Find Full Text PDFIn the present study, we propose a novel case-based similar image retrieval (SIR) method for hematoxylin and eosin (H&E) stained histopathological images of malignant lymphoma. When a whole slide image (WSI) is used as an input query, it is desirable to be able to retrieve similar cases by focusing on image patches in pathologically important regions such as tumor cells. To address this problem, we employ attention-based multiple instance learning, which enables us to focus on tumor-specific regions when the similarity between cases is computed.
View Article and Find Full Text PDF