Colloids Surf B Biointerfaces
February 2025
Extracellular vesicles (EVs), sub-micrometer lipid-bound particles released by most cells, are considered a novel area in both biology and medicine. Among characterization methods, infrared (IR) spectroscopy, especially attenuated total reflection (ATR), is a rapidly emerging label-free tool for molecular characterization of EVs. The relatively low number of vesicles in biological fluids (∼10 particle/mL), however, and the complex content of the EVs' milieu (protein aggregates, lipoproteins, buffer molecules) might result in poor signal-to-noise ratio in the IR analysis of EVs.
View Article and Find Full Text PDFBacterial outer membrane vesicles (OMVs) are emerging as important players in the host-microbiome interaction, while also proving to be a promising platform for vaccine development and targeted drug delivery. The available methods for measuring their biodistribution, however, are limited. We aimed to establish a high-efficiency radiolabeling method for the treatment of OMVs.
View Article and Find Full Text PDFNovel blend membranes containing S-PVA and PEBAX 1657 with a blend ratio of 8:2 (referred to as SPP) were prepared using a solution-casting technique. In the manufacturing process, sulfonated montmorillonite (S-MMT) in ratios of 0%, 3%, 5%, and 7% was used as a filler. The crystallinity of composite membranes has been investigated by X-ray diffraction (XRD), while the interaction between the components was evaluated using Fourier-transform infrared spectroscopy (FT-IR).
View Article and Find Full Text PDFThe Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) is a dual-frequency ice-penetrating radar (9 and 60 MHz) onboard the Europa Clipper mission. REASON is designed to probe Europa from exosphere to subsurface ocean, contributing the third dimension to observations of this enigmatic world. The hypotheses REASON will test are that (1) the ice shell of Europa hosts liquid water, (2) the ice shell overlies an ocean and is subject to tidal flexing, and (3) the exosphere, near-surface, ice shell, and ocean participate in material exchange essential to the habitability of this moon.
View Article and Find Full Text PDFIn standard SMLM methods, the photoswitching of single fluorescent molecules and the data acquisition processes are independent, which leads to the detection of single molecule blinking events on several consecutive frames. This mismatch results in several data points with reduced localization precision, and it also increases the possibilities of overlapping. Here we discuss how the synchronization of the fluorophores' ON state to the camera exposure time increases the average intensity of the captured point spread functions and hence improves the localization precision.
View Article and Find Full Text PDFDeveloping unique mechanisms of action are essential to combat the growing issue of antimicrobial resistance. Supramolecular assemblies combining the improved biostability of non-natural compounds with the complex membrane-attacking mechanisms of natural peptides are promising alternatives to conventional antibiotics. However, for such compounds the direct visual insight on antibacterial action is still lacking.
View Article and Find Full Text PDFAmong patients on peritoneal dialysis (PD), 50-80% will develop peritoneal fibrosis, and 0.5-4.4% will develop life-threatening encapsulating peritoneal sclerosis (EPS).
View Article and Find Full Text PDFDuring striated muscle development the first periodically repeated units appear in the premyofibrils, consisting of immature sarcomeres that must undergo a substantial growth both in length and width, to reach their final size. Here we report that, beyond its well established role in sarcomere elongation, the Sarcomere length short (SALS) protein is involved in Z-disc formation and peripheral growth of the sarcomeres. Our protein localization data and loss-of-function studies in the Drosophila indirect flight muscle strongly suggest that radial growth of the sarcomeres is initiated at the Z-disc.
View Article and Find Full Text PDFOptical insulation of the unit eyes (ommatidia) is an important prerequisite of precise sight with compound eyes. Separation of the ommatidia is ensured by pigment cells that organize into a hexagonal lattice in the Drosophila eye, forming thin walls between the facets. Cell adhesion, mediated by apically and latero-basally located junctional complexes, is crucial for stable attachment of these cells to each other and the basal lamina.
View Article and Find Full Text PDFThe important roles of bacterial outer membrane vesicles (OMVs) in various diseases and their emergence as a promising platform for vaccine development and targeted drug delivery necessitates the development of imaging techniques suitable for quantifying their biodistribution with high precision. To address this requirement, we aimed to develop an OMV specific radiolabeling technique for positron emission tomography (PET). A novel bacterial strain (E.
View Article and Find Full Text PDFN,N-dimethylglycine (DMG) is a naturally occurring compound being widely used as an oral supplement to improve growth and physical performance. Thus far, its effects on human skin have not been described in the literature. For the first time, we show that N,N-dimethylglycine sodium salt (DMG-Na) promoted the proliferation of cultured human epidermal HaCaT keratinocytes.
View Article and Find Full Text PDFHypothesis: Sculpting liquids into different shapes is usually based on the interfacial interactions of functionalized nanoparticles or polymers with specific ligands, leading to exciting material properties due to the combination of the mobility of liquid components with the solid-like characteristic of the arrested liquid/liquid interface. There is an intense interest in novel structured liquids produced from simple compounds with versatile application potentials. Complexes of oppositely charged commercial polyelectrolytes and traditional aliphatic surfactants are good candidates for this goal since they reveal rich structural features and could adsorb at various interfaces.
View Article and Find Full Text PDFA new method for enzyme substrate assembly and its use in proteolytic enzyme assays with colorimetric and electrochemical detection is presented. The novelty of the method is the use of dual-function synthetic peptide containing both gold clustering and protease-sensitive moieties, which not only induces the simple formation of the peptide-decorated gold nanoparticle test substrates but also allows for the detection of proteolysis in the same batch. Protease-treated nanoparticles with a destabilized peptide shell became more prone to electroactivity, and thus, the model enzyme plasmin activity could be quantified with stripping square wave voltammetry analysis as well, giving an alternative method to conduct aggregation-based assays.
View Article and Find Full Text PDFMyofibrils are long intracellular cables specific to muscles, composed mainly of actin and myosin filaments. The actin and myosin filaments are organized into repeated units called sarcomeres, which form the myofibrils. Muscle contraction is achieved by the simultaneous shortening of sarcomeres, which requires all sarcomeres to be the same size.
View Article and Find Full Text PDFObject detection is an image analysis task with a wide range of applications, which is difficult to accomplish with traditional programming. Recent breakthroughs in machine learning have made significant progress in this area. However, these algorithms are generally compatible with traditional pixelated images and cannot be directly applied for pointillist datasets generated by single molecule localization microscopy (SMLM) methods.
View Article and Find Full Text PDFSelf-assembled peptide nanostructures with stimuli-responsive features are promising as functional materials. Despite extensive research efforts, water-soluble supramolecular constructs that can interact with lipid membranes in a controllable way are still challenging to achieve. Here, we have employed a short membrane anchor protein motif () and coupled it to a spiropyran photoswitch.
View Article and Find Full Text PDFThe actin containing tropomyosin and troponin decorated thin filaments form one of the crucial components of the contractile apparatus in muscles. The thin filaments are organized into densely packed lattices interdigitated with myosin-based thick filaments. The crossbridge interactions between these myofilaments drive muscle contraction, and the degree of myofilament overlap is a key factor of contractile force determination.
View Article and Find Full Text PDFBackground: Over the past decade, several controversial studies described a relationship between vitamin D and atopic diseases. Low plasma vitamin D levels or even vitamin D deficiency was associated with an increased incidence of atopic disease, postulating that a higher dietary intake of vitamin D may be a beneficial strategy against atopic diseases such as atopic dermatitis (AD).
Objective: Our aim was to determine the relationship between plasma 25-hydroxyvitamin D3 (25(OH)D3) levels, the levels of the ligand of the vitamin D receptor (VDR) heterodimerization partner as well as the retinoid X receptor (RXR) and the active vitamin A5 derivative 9-cis-13,14-dihydroretinoic acid (9CDHRA) and AD severity.
Dorsal closure is a late embryogenesis process required to seal the epidermal hole on the dorsal side of the embryo. This process involves the coordination of several forces generated in the epidermal cell layer and in the amnioserosa cells, covering the hole. Ultimately, these forces arise due to cytoskeletal rearrangements that induce changes in cell shape and result in tissue movement.
View Article and Find Full Text PDFAxonal growth is mediated by coordinated changes of the actin and microtubule (MT) cytoskeleton. Ample evidence suggests that members of the formin protein family are involved in the coordination of these cytoskeletal rearrangements, but the molecular mechanisms of the formin-dependent actin-microtubule crosstalk remains largely elusive. Of the six formins, DAAM was shown to play a pivotal role during axonal growth in all stages of nervous system development, while FRL was implicated in axonal development in the adult brain.
View Article and Find Full Text PDFSurface modification of silica nanoparticles with organic functional groups while maintaining colloidal stability remains a synthetic challenge. This work aimed to prepare highly dispersed porous hollow organosilica particles (pHOPs) with amino surface modification. The amino-surface modification of pHOPs was carried out with 3-aminopropyl(diethoxy)methylsilane (APDEMS) under various reaction parameters, and the optimal pHOP-NH sample was selected and labelled with fluorescein isothiocyanate (FITC) to achieve fluorescent pHOPs (F-HOPs).
View Article and Find Full Text PDFPorous hollow silica particles possess promising applications in many fields, ranging from drug delivery to catalysis. From the synthesis perspective, the most challenging parameters are the monodispersity of the size distribution and the thickness and porosity of the shell of the particles. This paper demonstrates a facile two-pot approach to prepare monodisperse porous-hollow silica particles with uniform spherical shape and well-tuned shell thickness.
View Article and Find Full Text PDFTurquoise covered mosaic objects - especially masks - were attractive components of treasures transported to Europe from Mexico after the fall of the Aztec Empire in the 1500s. According to our present knowledge, the mosaic masks were manufactured for ritual purpose. The main material of mosaics, the turquoise was a high-prestige semi-precious stone among Mexican native people.
View Article and Find Full Text PDFThe red-emitting fluorescent properties of bovine serum albumin (BSA)-gold conjugates are commonly attributed to gold nanoclusters formed by metallic and ionized gold atoms, stabilized by the protein. Others argue that red fluorescence originates from gold cation-protein complexes instead, not gold nanoclusters. Our fluorescence and infrared spectroscopy, neutron, and X-ray small-angle scattering measurements show that the fluorescence and structural behavior of BSA-Au conjugates are different in normal and heavy water, strengthening the argument for the existence of loose ionic gold-protein complexes.
View Article and Find Full Text PDF