Publications by authors named "Mihalis Fakis"

Tripodal push-pull chromophores with D-(π-A) arrangement were synthesized using 1-methyl-2,4,5-triphenyl-1-imidazole as a central electron donor, and their thermal, electrochemical, photophysical and non-linear optical properties were studied and corroborated with quantum-chemical calculations. Their facile synthesis involved Suzuki-Miyaura and Knoevenagel reactions, allowing the installation of various peripheral electron acceptors such as formyl, cyano, ester, trifluoromethyl and more complex moieties such as malonic/acetic acid derivatives, indan-1,3-dione and rhodanine. All phenyl rings appended at the central imidazole core were more or less twisted depending on the peripheral substitution.

View Article and Find Full Text PDF

Molecular aggregation is a powerful tool for tuning advanced materials' photophysical and electronic properties. Here we present a novel potential for the aqueous-solvated aggregated state of boron dipyrromethene (BODIPY) to facilitate phototransformations otherwise achievable only under harsh chemical conditions. We show that the photoinduced symmetry-breaking charge separation state can itself initiate catalyst-free redox chemistry, leading to selective α-C(sp)-H bond activation/C-C coupling on the BODIPY backbone.

View Article and Find Full Text PDF

Benzothiazole is among prominent electron-withdrawing heteroarene moieties used in a variety of π-conjugated molecules. Its relative orientation with respect to the principal dipole vector(s) of chromophores derived thereof is crucial, affecting photophysical and nonlinear optical properties. Here we compare the photophysics and ultrafast dynamics of dipolar and octupolar molecules comprising a triphenylamine electron-donating core, ethynylene π-conjugated linker(s) and benzothiazole acceptor(s) having the matched or mismatched orientation (with respect to the direction of intramolecular charge transfer), while a carbaldehyde group is attached as an auxiliary acceptor.

View Article and Find Full Text PDF

We investigate herein the excited state dynamics and symmetry breaking processes in three benzothiazole-derived two-photon absorbing chromophores by femtosecond fluorescence and transient absorption (fs-TA) spectroscopies in solvents of various polarity. The chromophores feature a quasi-quadrupolar D-π-A-π-D architecture comprised of an electron-withdrawing benzothiazole core and lateral triphenylamine donors (), while the acceptor strength of the central unit is enforced by attached cyano groups () and the electron-donating strength of the arylamine moieties by introduction of peripheral methoxy groups (). Steady state spectroscopy reveals positive solvatochromism, which is mostly pronounced for .

View Article and Find Full Text PDF

Copper(II)-catalyzed C-H/C-H coupling of dipolar 2--benzothiazoles end-capped with triphenylamine moieties affords highly fluorescent 2,2'-bibenzothiazoles with quadrupolar (D-π-A-π-D) architecture displaying large two-photon absorption (TPA) cross sections (543-1252 GM) in the near-infrared region. The notably higher TPA performance as compared to quadrupolar π-systems with a widely used 2,2'-bipyridine core, along with the ease of the synthesis and chelating N^N ability, makes the title biheteroaryl platform an attractive building block for a large scope of functional dyes exploiting nonlinear optical phenomena.

View Article and Find Full Text PDF

Direct iodination of benzothiazoles under strong oxidative/acidic conditions leads to a mixture of iodinated heteroarenes with 1-2 major components, which are easily separable and which structures depend on the I equivalents used. Among the unexpected but dominant products were identified 4,7-diiodobenzothiazoles with a rare substitution pattern for SAr reactions of this scaffold. These were employed in the synthesis of 4,7-bis(triarylamine-ethynyl)benzothiazoles - a new class of highly efficient quasi-quadrupolar fluorophores displaying large two-photon absorption cross sections (540-1374 GM) in the near-infrared region.

View Article and Find Full Text PDF

Six pyrimidine-based push-pull systems substituted at positions C2 and C4/6 with phenylacridan and styryl moieties, employing methoxy or N,N-diphenylamino donors, have been designed and synthesized through cross-coupling and Knoevenagel reactions. X-ray analysis confirmed that the molecular structure featured the acridan moiety arranged perpendicularly to the residual π system. Photophysical studies revealed significant differences between the methoxy and N,N-diphenylamino chromophores.

View Article and Find Full Text PDF

This contribution aims at investigating the branching effect on the steady state, time resolved fluorescence and two-photon absorption (2PA) properties of dimethylamino and diphenylamino substituted styrylpyrimidine derivatives, by means of a combined experimental and theoretical study. In contrast to classical branched molecules with a triphenylamine central core and electron accepting groups at the periphery, here, branched molecules with reverse topology and different symmetries are examined, namely a styrylpyrimidine group is used as the electron withdrawing core and dimethylamino or diphenylamino donors are incorporated at the periphery. Besides, compared to the great majority of existing branched systems, the herein studied molecules do not have C3 symmetry.

View Article and Find Full Text PDF
Article Synopsis
  • This study presents a method to improve energy level alignment and electron injection in organic light emitting diodes (OLEDs) using functionalized zinc porphyrin compounds as interlayers.
  • The researchers focus on different configurations, molecular dipole moments, and terminal groups of the porphyrins to analyze their impact on optical properties and energy levels through various spectroscopy and measurements.
  • The results show that incorporating these functionalized porphyrin interlayers enhances OLED performance significantly, achieving luminance levels an order of magnitude greater than standard devices without these modifications.
View Article and Find Full Text PDF

A comparative study of the photophysical properties of octupolar pyridyl-terminated triphenylamine molecule, with its quadrupolar and dipolar analogues, by means of ambient and low temperature steady state spectroscopy and femtosecond to nanosecond time-resolved fluorescence spectroscopy is reported. The push-pull molecules bear triphenylamine electron donating core, pyridine peripheral electron acceptors, and acetylene π-bridge. The samples were studied in solvents of varying polarity and also upon addition of small amounts of acetic acid to induce protonation of the pyridine group.

View Article and Find Full Text PDF

Effective interface engineering has been shown to play a vital role in facilitating efficient charge-carrier transport, thus boosting the performance of organic photovoltaic devices. Herein, we employ water-soluble lacunary polyoxometalates (POMs) as multifunctional interlayers between the titanium dioxide (TiO) electron extraction/transport layer and the organic photoactive film to simultaneously enhance the efficiency, lifetime, and photostability of polymer solar cells (PSCs). A significant reduction in the work function (W) of TiO upon POM utilization was observed, with the magnitude being controlled by the negative charge of the anion and the selection of the addenda atom (W or Mo).

View Article and Find Full Text PDF

We present here the self-assembly of a green-emitting metallosupramolecular rhomboid into a rigid, highly-ordered 3D multichromophoric network through the mediation of a tetra-anionic violet-blue molecular emitter. Control was obtained on the spatial topology, the electronic energy landscape and the fluorescence polarization of the interacting dipoles.

View Article and Find Full Text PDF

Modifications of the ZnO electron extraction layer with low-pressure H plasma treatment increased the efficiency of inverted polymer solar cells (PSCs) based on four different photoactive blends, namely, poly(3-hexylthiophene):[6,6]-phenyl C71 butyric acid methyl ester (P3HT:PC71BM), P3HT:1',1″,4',4″-tetrahydro-di[1,4]methanonaphthaleno-[5,6]ullerene-C60 (P3HT:IC60BA), poly[(9-(1-octylnonyl)-9H-carbazole-2,7-diyl)-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:PC71BM (PCDTBT:PC71BM), and (poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-(2-ethylhexy)carbonyl]thieno[3,4-b]thiophenediyl]]):PC71BM (PTB7:PC71BM), irrespective of the donor:acceptor combination in the photoactive blend. The drastic improvement in device efficiency is dominantly attributable to the reduction in the work function of ZnO followed by a decreased energy barrier for electron extraction from fullerene acceptor. In addition, reduced recombination losses and improved nanomorphology of the photoactive blend in the devices with the H plasma treated ZnO layer were observed, whereas exciton dissociation also improved with hydrogen treatment.

View Article and Find Full Text PDF

We herein present the coordination-driven supramolecular synthesis and photophysics of a [4+4] and a [2+2] assembly, built up by alternately collocated donor-acceptor chromophoric building blocks based, respectively, on the boron dipyrromethane (Bodipy) and perylene bisimide dye (PBI). In these multichromophoric scaffolds, the intensely absorbing/emitting dipoles of the Bodipy subunit are, by construction, cyclically arranged at the corners and aligned perpendicular to the plane formed by the closed polygonal chain comprising the PBI units. Steady-state and fs time-resolved spectroscopy reveal the presence of efficient energy transfer from the vertices (Bodipys) to the edges (PBIs) of the polygons.

View Article and Find Full Text PDF

A computer-aided design of novel D-π-A-π-D styrylamines containing five isomeric benzobisthiazole moieties as the electron-accepting core has revealed the linear centrosymmetric benzo[1,2-d:4,5-d']bisthiazole as the most promising building block for engineering chromophores displaying high two-photon absorption (TPA) in the near-IR region, as also confirmed experimentally. The ease of synthesis of quadrupolar derivatives thereof, combined with extraordinarly high TPA action cross sections (δTPAΦf > 1500 GM), makes these heteroaromatic systems particularly attractive as diagnostic agents in 3D fluorescence imaging.

View Article and Find Full Text PDF

The coordination-driven synthesis of a rhomboid cavitand composed of two different Bodipys and its inclusion complex with 1,3,6,8-tetrasulfopyrene via ionic self-assembly was established by X-ray crystallography. Highly efficient and unidirectional intra-host and guest-to-host energy transfer was demonstrated by femtosecond fluorescence spectroscopy.

View Article and Find Full Text PDF

A series of dipolar and octupolar triphenylamine-derived dyes containing a benzothiazole positioned in the matched or mismatched fashion have been designed and synthesized via palladium-catalyzed Sonogashira cross-coupling reactions. Linear and nonlinear optical properties of the designed molecules were tuned by an additional electron-withdrawing group (EWG) and by changing the relative positions of the donor and acceptor substituents on the heterocyclic ring. This allowed us to examine the effect of positional isomerism and extend the structure-property relationships useful in the engineering of novel heteroaromatic-based systems with enhanced two-photon absorption (TPA).

View Article and Find Full Text PDF

A series of novel heterocycle-based dyes with donor-pi-bridge-acceptor-pi-bridge-donor (D-pi-A-pi-D) structural motif, where benzothiazole serves as an electron-withdrawing core, have been designed and synthesized via palladium-catalyzed Sonogashira and Suzuki-type cross-coupling reactions. All the target chromophores show strong one-photon and two-photon excited emission. The maximum two-photon absorption (TPA) cross sections delta(TPA) of the prepared derivatives bearing diphenylamino functionalities occur at wavelengths ranging from 760 to 800 nm and are as large as approximately 900-1100 GM.

View Article and Find Full Text PDF

Two photon absorption (TPA) and photophysical properties of three new symmetrical chromophores with electron accepting phthalimide edge substituents have been studied. The three chromophores contain fluorene, alcoxy-substituted divinyl benzene, and carbazole moieties as central cores, respectively. The femtosecond time-resolved fluorescence upconversion spectroscopy and two photon excited fluorescence technique have been carried out.

View Article and Find Full Text PDF

The influence of aggregates and solvent aromaticity on the photophysics and fluorescence dynamics of two conjugated polymers is studied. The two polymers are derivatives of poly(p-phenylene vinylene) (PPV) containing different kinked moieties along the main chain. The polymers contain 2,6-diphenylpyridine and m-terphenyl kinked moieties and they are abbreviated as PN and PC, respectively.

View Article and Find Full Text PDF

The excited-state dynamics of two oligothiophenes, 5,5'-dicarboxyhaldehyde 2,2',5',2' '-terthiophene and 5-carboxyhaldehyde 2,2',5',2' '-terthiophene, were studied by time-resolved fluorescence spectroscopy, in the femtosecond regime. The isotropic and anisotropic parameters of their fluorescence were calculated. The angle (alpha) between the absorption and emission molecular dipoles was estimated from the initial fluorescence anisotropy.

View Article and Find Full Text PDF

A recently synthesized cationic water-soluble poly(fluorenevinylene-co-phenylenevinylene) was studied by means of steady state and femtosecond time resolved upconversion spectroscopy in aqueous and EtOH solutions. Steady state spectroscopic measurements showed that the polymer emits at the blue-green spectral region and that aggregates are formed in concentrated polymer solutions. The fluorescence dynamics of the polymer in concentrated solutions, studied at a range of emission wavelengths, exhibited a wavelength dependent and multiexponential decay, indicating the existence of various decay mechanisms.

View Article and Find Full Text PDF

The current article presents the photobleaching properties of a group of pyrylium salts under ultrashort pulsed illumination. These pyrylium salts have the same basic chemical structure and differ only by a specific substituent. It is proven experimentally that two different mechanisms are simultaneously present to the photobleaching of all molecules studied (independently of their specific chemical structure).

View Article and Find Full Text PDF