Data-driven phenotype analyses on Electronic Health Record (EHR) data have recently drawn benefits across many areas of clinical practice, uncovering new links in the medical sciences that can potentially affect the well-being of millions of patients. In this paper, EHR data is used to discover novel relationships between diseases by studying their comorbidities (co-occurrences in patients). A novel embedding model is designed to extract knowledge from disease comorbidities by learning from a large-scale EHR database comprising more than 35 million inpatient cases spanning nearly a decade, revealing significant improvements on disease phenotyping over current computational approaches.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
November 2017
Increased availability of Electronic Health Record (EHR) data provides unique opportunities for improving the quality of health services. In this study, we couple EHRs with the advanced machine learning tools to predict three important parameters of healthcare quality. More specifically, we describe how to learn low-dimensional vector representations of patient conditions and clinical procedures in an unsupervised manner, and generate feature vectors of hospitalized patients useful for predicting their length of stay, total incurred charges, and mortality rates.
View Article and Find Full Text PDF