Research on smoking behaviour has primarily focused on adolescents, with less attention given to middle-aged and older adults in rural settings. This study examines the influence of personal networks and sociodemographic factors on smoking behaviour in a rural Romanian community. We analysed data from 76 participants, collected through face-to-face interviews, including smoking status (non-smokers, current and former smokers), social ties and demographic details.
View Article and Find Full Text PDFBackground: Most studies assessing the impact of online media and social media use on COVID-19 vaccine hesitancy predominantly rely on survey data, which often fail to capture the clustering of health opinions and behaviors within real-world networks. In contrast, research using social network analysis aims to uncover the diverse communities and discourse themes related to vaccine support and hesitancy within social media platforms. Despite these advancements, there is a gap in the literature on how a person's social circle affects vaccine acceptance, wherein an important part of social influence stems from offline interactions.
View Article and Find Full Text PDFExperts worldwide have constantly been calling for high-quality open-access epidemiological data, given the fast-evolving nature of the COVID-19 pandemic. Disaggregated high-level granularity records are still scant despite being essential to corroborate the effectiveness of virus containment measures and even vaccination strategies. We provide a complete dataset containing disaggregated epidemiological information about all the COVID-19 patients officially reported during the first 250 days of the COVID-19 pandemic in Bucharest (Romania).
View Article and Find Full Text PDFDialogues among politicians provide a window into political landscapes and relations among parties and nations. Existing research has focused on the outcomes of such dialogues and on the structure of social networks on which they take place. Little is known, however, about how political discussion networks form and which are the main driving forces behind their formation.
View Article and Find Full Text PDFWe analyse officially procured data detailing the COVID-19 transmission in Romania's capital Bucharest between 1st August and 31st October 2020. We apply relational hyperevent models on 19,713 individuals with 13,377 infection ties to determine to what degree the disease spread is affected by age whilst controlling for other covariate and human-to-human transmission network effects. We find that positive cases are more likely to nominate alters of similar age as their sources of infection, thus providing evidence for age homophily.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2019
The magnetoresistance (MR) of a material is typically insensitive to reversing the applied field direction and varies quadratically with magnetic field in the low-field limit. Quantum effects, unusual topological band structures, and inhomogeneities that lead to wandering current paths can induce a cross-over from quadratic to linear MR with increasing magnetic field. Here we explore a series of metallic charge- and spin-density-wave systems that exhibit extremely large positive linear MR.
View Article and Find Full Text PDFAlthough vitiligo is one of the most frequently occurring depigmentary disorder, its pathophysiology is still not fully clarified, resulting in the incapacity to find a targeted cure. Most of the treatment options available at the time have an anti-inflammatory or immunosuppressive effect, influencing the immune factor in vitiligo but without having a direct effect on melanocyte differentiation, migration or proliferation. This study shows that (PN) extract and its main alkaloid, piperine, promote melanocyte proliferation , being consistent with previous study.
View Article and Find Full Text PDFPressure can transform a transparent material into an opaque one, quench the moments in a magnet and force solids to flow like liquids. At 15 GPa, the pressure found 500 km below the earth's surface, the semiconductors silicon and germanium superconduct. Yet, at this same pressure, we show here that the magnetism in metallic GdSi remains completely robust even as it shrinks by one-seventh of its volume.
View Article and Find Full Text PDFWe probe the volume collapse transition (ΔV/Vo ∼ 15%) between the isostructural γ and α phases (T ∼ 100 K) of Ce0.9Th0.1 using the Hall effect, three-terminal capacitive dilatometry, and electrical resistivity measurements.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2013
Materials with strong correlations are prone to spin and charge instabilities, driven by Coulomb, magnetic, and lattice interactions. In materials that have significant localized and itinerant spins, it is not obvious which will induce order. We combine electrical transport, X-ray magnetic diffraction, and photoemission studies with band structure calculations to characterize successive antiferromagnetic transitions in GdSi.
View Article and Find Full Text PDFWe study the properties of compacton-anticompacton collision processes. We compare and contrast results for the case of compacton-anticompacton solutions of the K(l,p) Rosenau-Hyman (RH) equation for l = p = 2, with compacton-anticompacton solutions of the L(l,p) Cooper-Shepard-Sodano (CSS) equation for p = 1 and l = 3. This study is performed using a Padé discretization of the RH and CSS equations.
View Article and Find Full Text PDFWe derive a theoretical description for dilute Bose gases as a loop expansion in terms of composite-field propagators by rewriting the Lagrangian in terms of auxiliary fields related to the normal and anomalous densities. We demonstrate that already in leading order this nonperturbative approach describes a large interval of coupling-constant values, satisfies Goldstone's theorem, yields a Bose-Einstein transition that is second order, and is consistent with the critical temperature predicted in the weak-coupling limit by the next-to-leading-order large-N expansion.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2010
Extending a Padé approximant method used for studying compactons in the Rosenau-Hyman (RH) equation, we study the numerical stability of single compactons of the Cooper-Shepard-Sodano (CSS) equation and their pairwise interactions. The CSS equation has a conserved Hamiltonian which has allowed various approaches for studying analytically the nonlinear stability of the solutions. We study three different compacton solutions and find they are numerically stable.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2010
We consider the nonlinear Dirac equations (NLDE's) in 1+1 dimension with scalar-scalar self interaction g{2}/k+1(ΨΨ){k+1} , as well as a vector-vector self interaction g{2}/k+1(Ψγ{μ}ΨΨγ{μ}Ψ){1/2(k+1)} . We find the exact analytic form for solitary waves for arbitrary k and find that they are a generalization of the exact solutions for the nonlinear Schrödinger equation (NLSE) and reduce to these solutions in a well defined nonrelativistic limit. We perform the nonrelativistic reduction and find the 1/2m correction to the NLSE, valid when |ω-m|<<2m , where ω is the frequency of the solitary wave in the rest frame.
View Article and Find Full Text PDFWe present an angle-resolved photoemission spectroscopy study of the electronic structure of SnTe and compare the experimental results to ab initio band structure calculations as well as a simplified tight-binding model of the p bands. Our study reveals the conjectured complex Fermi surface structure near the L points showing topological changes in the bands from disconnected pockets, to open tubes, and then to cuboids as the binding energy increases, resolving lingering issues about the electronic structure. The chemical potential at the crystal surface is found to be 0.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2010
We present a systematic approach for calculating higher-order derivatives of smooth functions on a uniform grid using Padé approximants. We illustrate our findings by deriving higher-order approximations using traditional second-order finite-difference formulas as our starting point. We employ these schemes to study the stability and dynamical properties of K(2,2) Rosenau-Hyman compactons including the collision of two compactons and resultant shock formation.
View Article and Find Full Text PDFElastic neutron-scattering, inelastic x-ray scattering, specific-heat, and pressure-dependent electrical transport measurements have been made on single crystals of AuZn and Au0.52Zn0.48.
View Article and Find Full Text PDFUltraviolet-photoemission (UPS) measurements and supporting specific-heat, thermal-expansion, resistivity, and magnetic-moment measurements are reported for the magnetic shape-memory alloy Ni2MnGa over the temperature range 100
Neuronal communication in the brain involves electrochemical currents, which produce magnetic fields. Stimulus-evoked brain responses lead to changes in these fields and can be studied using magneto- and electro-encephalography (MEG/EEG). In this paper we model the spatiotemporal distribution of the magnetic field of a physiologically idealized but anatomically realistic neuron to assess the possibility of using magnetic resonance imaging (MRI) for directly mapping the neuronal currents in the human brain.
View Article and Find Full Text PDFDilute gas Bose-Einstein condensates (BEC's), currently used to cool fermionic atoms in atom traps, can also probe the superfluidity of these fermions. The damping rate of BEC-acoustic excitations (phonon modes), measured in the middle of the trap as a function of the phonon momentum, yields an unambiguous signature of BCS-like superfluidity, provides a measurement of the superfluid gap parameter, and gives an estimate of the size of the Cooper pairs in the BEC-BCS crossover regime. We also predict kinks in the momentum dependence of the damping rate which can reveal detailed information about the fermion quasiparticle dispersion relation.
View Article and Find Full Text PDFThe gamma-->alpha isostructural transition in the Ce0.9-xLaxTh0.1 system is measured as a function of La alloying using specific heat, magnetic susceptibility, resistivity, thermal expansivity or striction measurements.
View Article and Find Full Text PDFUranium is the only known element that features a charge-density wave (CDW) and superconductivity. We report a comparison of the specific heat of single-crystal and polycrystalline alpha-uranium. In the single crystal we find excess contributions to the heat capacity at 41 K, 38 K, and 23 K, with a Debye temperature ThetaD = 265 K.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2005
We have found exact, periodic, time-dependent solitary wave solutions of a discrete phi4 field theory model. For finite lattices, depending on whether one is considering a repulsive or attractive case, the solutions are Jacobi elliptic functions, either sn (x,m) [which reduce to the kink function tanh (x) for m-->1 ], or they are dn (x,m) and cn (x,m) [which reduce to the pulse function sech (x) for m-->1 ]. We have studied the stability of these solutions numerically, and we find that our solutions are linearly stable in most cases.
View Article and Find Full Text PDFWe propose a new method of detecting the onset of superfluidity in a two-component ultracold fermionic gas of atoms governed by an attractive short-range interaction. By studying the two-body correlation functions we find that a measurement of the momentum distribution of the density and spin-response functions allows one to access separately the normal and anomalous densities. The change in sign at low momentum transfer of the normal-ordered part of the density response function signals the transition between a BEC and a BCS regime, characterized by small and large pairs, respectively.
View Article and Find Full Text PDFPhys Rev Lett
February 2000
We calculate the charge form factor and the longitudinal structure function for 16O and compare with the available experimental data, up to a momentum transfer of 4 fm(-1). The ground-state correlations are generated using the coupled-cluster [ exp(S)] method, together with the realistic v18 NN interaction and the Urbana IX three-nucleon interaction. Center-of-mass corrections are dealt with by adding a center-of-mass Hamiltonian to the usual internal Hamiltonian, and by means of a many-body expansion for the computation of the observables measured in the center-of-mass system.
View Article and Find Full Text PDF