Kohn-Sham density functional theory (DFT) is a standard tool in most branches of chemistry, but accuracies for many molecules are limited to 2-3 kcal ⋅ mol with presently-available functionals. Ab initio methods, such as coupled-cluster, routinely produce much higher accuracy, but computational costs limit their application to small molecules. In this paper, we leverage machine learning to calculate coupled-cluster energies from DFT densities, reaching quantum chemical accuracy (errors below 1 kcal ⋅ mol) on test data.
View Article and Find Full Text PDFObjective: Methods from brain-computer interfacing (BCI) open a direct access to the mental processes of computer users, which offers particular benefits in comparison to standard methods for inferring user-related information. The signals can be recorded unobtrusively in the background, which circumvents the time-consuming and distracting need for the users to give explicit feedback to questions concerning the individual interest. The obtained implicit information makes it possible to create dynamic user interest profiles in real-time, that can be taken into account by novel types of adaptive, personalised software.
View Article and Find Full Text PDF