Membrane desalination is an economical and energy-efficient method to meet the current worldwide water scarcity. However, state-of-the-art reverse osmosis membranes are gradually being replaced by novel membrane materials as a result of ongoing technological advancements. These novel materials possess intrinsic pore structures or can be assembled to form lamellar membrane channels for selective transport of water or solutes (e.
View Article and Find Full Text PDFAquaporins (AQPs) are natural proteins that can selectively transport water across cell membranes. Heterogeneous H-bonding of water with the inner wall of the pores of AQPs is of maximal importance regarding the optimal stabilization of water clusters within channels, leading to selective pore flow water transport against ions. To gain deeper insight into the water permeation mechanisms, simpler artificial water channels (AWCs) have been developed.
View Article and Find Full Text PDFThe capture of CO is of high interest in our society representing an essential tool to mitigate man-made climate warming. Membrane technology applied for CO capture offers several advantages in terms of energy savings, simple operation, and easy scale-up. Glassy membranes are associated with low gas permeability that negatively affect on their industrial implementation.
View Article and Find Full Text PDFArtificial water channels (AWCs) have been extensively explored to mimic natural proteins, which enables to effectively transport water while blocking ions. As one of the first AWCs, self-assembled I-quartets (HCx) have showcased high water-permselectivity that can be enhanced by improving their distribution and stability within membrane. The use of long alkyl chains (n>8) is constrained by their low solubility and aggregation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
The high level of accumulation of therapeutic agents in tumors is crucial for cancer treatment. Compared to the passive tumor-targeting effect, active tumor-targeting delivery systems, primarily mediated by peptides with high production costs and reduced circulation time, are highly desired. Platelet-driven technologies have opened new avenues for targeted drug delivery prevalently through a membrane coating strategy that involves intricate manufacturing procedures or the fucoidan-mediated hitchhiking method with limited platelet affinity.
View Article and Find Full Text PDFOrganic cocrystals obtained from multicomponent self-assembly have garnered considerable attention due to their distinct phosphorescence properties and broad applications. Yet, there have been limited reports on cocrystal systems that showcase efficient deep-red to near-infrared (NIR) charge-transfer (CT) phosphorescence. Furthermore, effective strategies to modulate the emission pathways of both fluorescence and phosphorescence remain underexplored.
View Article and Find Full Text PDFMechanical forces have been shown to influence cellular decisions to grow, die, or differentiate, through largely mysterious mechanisms. Separately, changes in resting membrane potential have been observed in development, differentiation, regeneration, and cancer. We now demonstrate that membrane potential is the central mediator of cellular response to mechanical pressure.
View Article and Find Full Text PDFTransport of water across cell membranes is a fundamental process for important biological functions. Herein, we focused our research on a new type of symmetrical saccharide rim-functionalized pillar[5]arene (PA-S) artificial water channels with variable pore structures. To point out the versatility of PA-S channels, we systematically varied the nature of anchoring/gate keepers d-mannoside, d-mannuronic acid, or sialic acid H-bonding groups on lateral pillar[5]arene (PA) arms, known as good membrane adhesives, to best describe the influence of the chemical structure on their transport activity.
View Article and Find Full Text PDFArtificial water channels (AWCs) that selectively transport water and reject ions through bilayer membranes have potential to act as synthetic Aquaporins (AQPs). AWCs can have a similar osmotic permeability, better stability, with simpler manufacture on a larger-scale and have higher functional density and surface permeability when inserted into the membrane. Here, we report the screening of combinatorial libraries of symmetrical and unsymmetrical rim-functionalized PAs A-D that are able to transport ca.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2023
Artificial water channels selectively transport water, excluding all ions. Unimolecular channels have been synthesized via complex synthetic steps. Ideally, simpler compounds requesting less synthetic steps should efficiently lead to selective channels by self-assembly.
View Article and Find Full Text PDFNature creates aquaporins to effectively transport water, rejecting all ions including protons. Aquaporins (AQPs) has brought inspiration for the development of Artificial Water Channels (AWCs). Imidazole-quartet (I-quartet) was the first AWC that enabled to self-assemble a tubular backbone for rapid water and proton permeation with total ion rejection.
View Article and Find Full Text PDFThis special collection presents original research articles and reviews that are connected to the multifaceted and rich chemistry of water. These works serve as an illustration of how, despite its apparent simplicity and ubiquity, water continues to be at the center of scientific exploration from a wide range of perspectives and employing the toolbox of modern-day chemistry.
View Article and Find Full Text PDFThe large-scale hydrogen production and application through electrocatalytic water splitting depends crucially on the development of highly efficient, cost-effective electrocatalysts for oxygen evolution reaction (OER), which, however, remains challenging. Here, a new electrocatalyst of trimetallic Fe-Co-Ni hydroxide (denoted as FeCoNiO H ) with a nanotubular structure is developed through an enhanced Kirkendall process under applied potential. The FeCoNiO H features synergistic electronic interaction between Fe, Co, and Ni, which not only notably increases the intrinsic OER activity of FeCoNiO H by facilitating the formation of *OOH intermediate, but also substantially improves the intrinsic conductivity of FeCoNiO H to facilitate charge transfer and activate catalytic sites through electrocatalyst by promoting the formation of abundant Co .
View Article and Find Full Text PDFHybrid dextran-G-quartet produces tunable biocompatible three-dimensional thixotropic hydrogels, able to support cell growth.
View Article and Find Full Text PDFThe growing applications of therapeutic nucleic acids requires the concomitant development of vectors that are optimized to complex one type of nucleic acid, forming nanoparticles suitable for further trafficking and delivery. While fine-tuning a vector by molecular engineering to obtain a particular nanoscale organization at the nanoparticle level can be a challenging endeavor, we turned the situation around and instead screened the complexation preferences of dynamic constitutional frameworks toward different types of DNAs. Dynamic constitutional frameworks (DCF) are recently-identified vectors by our group that can be prepared in a versatile manner through dynamic covalent chemistry.
View Article and Find Full Text PDFThe use of nucleic acids as templates, which can trigger the self-assembly of their own vectors represent an emerging, simple and versatile, approach toward the self-fabrication of tailored nucleic acids delivery vectors. However, the structure-activity relationships governing this complex templated self-assembly process that accompanies the complexation of nucleic acids remains poorly understood. Herein, the class of arginine-rich dynamic covalent polymers (DCPs) composed of different monomers varying the number and position of arginines were studied.
View Article and Find Full Text PDFOne of the most common biochemical processes is the proton transfer through the cell membranes, having significant physiological functions in living organisms. The proton translocation mechanism has been extensively studied; however, mechanistic details of this transport are still needed. During the last decades, the field of artificial proton channels has been in continuous growth, and understanding the phenomena of how confined water and channel components mediate proton dynamics is very important.
View Article and Find Full Text PDFA nitro-decorated microporous covalent organic framework, TpPa-NO, has been synthesized in a gram scale with a one-pot reaction. It can effectively selectively separate CH from a CH/CH/CO mixture and capture CO from CO/N based on ideal adsorption solution theory calculations and transient breakthrough experiments. Theoretical calculations illustrated that the hydrogen atoms of imine bonds, carbonyl oxygen, and nitro group show high affinity toward CH and CO, playing vital roles in efficient separation.
View Article and Find Full Text PDFRubbery organic frameworks-ROFs have recently emerged as an intriguing class of dynamers by virtue of reversible connections between their building units. Their highly adaptative features at the origin of their spectacular self-healing properties made them also attractive candidates for the development of gas-selective membranes combining high selectivity and fast permeability. So far, little is known on the origin of this unique trait and this clearly hampers the exploitation of this class of dynamers in many areas where stimuli-responsive pore dynamics is of great importance.
View Article and Find Full Text PDFThe rational design and synthesis of highly efficient electrocatalysts for oxygen evolution reaction (OER) is of critical importance to the large-scale production of hydrogen by water electrolysis. Here, we develop a bimetallic, synergistic, and highly efficient Co-Fe-P electrocatalyst for OER, by selecting a two-dimensional metal-organic framework (MOF) of Co-ZIF-L as the precursor. The Co-Fe-P electrocatalyst features pronounced synergistic effects induced by notable electron transfer from Co to Fe, and a large electrochemical active surface area achieved by organizing the synergistic Co-Fe-P into hierarchical nanosheet arrays with disordered grain boundaries.
View Article and Find Full Text PDFCross linked gold-dynamic constitutional frameworks (DCFs) are functional materials of potential relevance for biosensing applications, given their adaptivity and high responsivity against various external stimuli (such as pH, temperature) or specific interactions with biomolecules (enzymes or DNA) via internal constitutional dynamics. However, characterization and assessment of their dynamic conformational changes in response to external stimuli has never been reported. This study proves the capability of Surface Plasmon Resonance (SPR) assays to analyse the adaptive structural modulation of a functional matrix encompassing 3D gold-dynamic constitutional frameworks (Au-DCFs) when exposed to pH variations, as external stimuli.
View Article and Find Full Text PDFMembrane-based desalination have an important role in water purification. Inspired by highly performant biological proteins, artificial water channels (AWC) have been proposed as active components to overcome the permeability/selectivity trade-off of desalination processes. Promising performances have been reported with Pillararene crystalline phases revealing impressive molecular-scale separation performances, when used as selective porous materials.
View Article and Find Full Text PDFHydrogels constructed from natural sources have received increased attention recently, including applications in biomedical fields. They are protein or polysaccharide cross-linked scaffolds that display water retention and are able to recognize host cargos. Their excellent biocompatibility does not always combine with high mechanical strength (up to 136 kPa) and thermostability, making them less useful in biomedical applications.
View Article and Find Full Text PDF