Publications by authors named "Mihaiela C Stuparu"

The synthesis of new compounds is an important pillar for the advancement of the field of chemistry and adjacent fields. In this regard, over the last decades huge efforts have been made to not only develop new molecular entities but also more efficient sustainable synthetic methodologies due to the increasing concerns over environmental sustainability. In this context, we have developed synthetic routes to novel corannulene flanked imidazolium bromide NHC precursors both in the solid-state and solution phases.

View Article and Find Full Text PDF

In this study, we explore feasibility of the mechanochemical approach in the synthesis of tetrabenzofluorenes (fluoreno[5]helicenes). For this, commercially available phenylated cyclopentadiene precursors are subjected to the Scholl reaction in the solid state using FeCl as an oxidant and sodium chloride as the solid reaction medium. This ball milling process gave access to the 5-membered ring containing-helicenes in one synthetic step in high (95-96 %) isolated yields.

View Article and Find Full Text PDF

Corannulene, a curved polycyclic aromatic hydrocarbon, is prepared in a multigram scale through mechanochemical synthesis. Initially, a mixer mill approach is examined and found to be suitable for a gram scale synthesis. For larger scales, planetary mills are used.

View Article and Find Full Text PDF

Artificial molecular machines have captured the full attention of the scientific community since Jean-Pierre Sauvage, Fraser Stoddart, and Ben Feringa were awarded the 2016 Nobel Prize in Chemistry. The past and current developments in molecular machinery (rotaxanes, rotors, and switches) primarily rely on organic-based compounds as molecular building blocks for their assembly and future development. In contrast, the main group chemical space has not been traditionally part of the molecular machine domain.

View Article and Find Full Text PDF

While the synthesis of nanographenes has advanced greatly in the past few years, development of their atomically precise functionalization strategies remains rare. The ability to modify the carbon scaffold translates to controlling, adjusting, and adapting molecular properties. Towards this end, here, we show that mechanochemistry is capable of transforming graphitization precursors directly into chlorinated curved nanographenes through a Scholl reaction.

View Article and Find Full Text PDF

Herein we show that hybridisation of buckybowl corannulene and thiophene-S,S-dioxide motifs is a general approach for the preparation of high electron affinity molecular materials. The devised synthesis is modular and relies on thienannulation of corannnulene-based phenylacetylene scaffolds. The final compounds are highly soluble in common organic solvents.

View Article and Find Full Text PDF

This special collection of Chemistry - An Asian Journal features contributions made by female scientists working in the field of chemistry. In her editorial, Mihaiela C. Stuparu briefly describes the background that led to the conception of this special collection.

View Article and Find Full Text PDF

The transformation of planar aromatic molecules into π-extended non-planar structures is a challenging task and has not been realized by mechanochemistry before. Here we report that mechanochemical forces can successfully transform a planar polyarene into a curved geometry by creating new C-C bonds along the rim of the molecular structure. In doing so, mechanochemistry does not require inert conditions or organic solvents and provide better yields within shorter reaction times.

View Article and Find Full Text PDF

Fullerenes have unique structural and electronic properties that make them attractive candidates for diagnostic, therapeutic, and theranostic applications. However, their poor water solubility remains a limiting factor in realizing their full biomedical potential. Here, we present an approach based on a combination of supramolecular and covalent chemistry to access well-defined fullerene-containing polymer nanoparticles with a core-shell structure.

View Article and Find Full Text PDF

Typically, the synthesis of phenanthrene-based polycyclic aromatic hydrocarbons relies on the Mallory reaction. In this approach, stilbene (PhCH[double bond, length as m-dash]CHPh)-based precursors undergo an oxidative photocyclization reaction to join the two adjacent aromatic rings into an extended aromatic structure. However, if one C[double bond, length as m-dash]C carbon atom is replaced by a nitrogen atom (C[double bond, length as m-dash]N), the synthesis becomes practically infeasible.

View Article and Find Full Text PDF

This Account describes a body of research in the design and synthesis of molecular materials prepared from corannulene. Corannulene (CH) is a molecular bowl of carbon that can be visualized as the hydrogen-terminated cap of buckminsterfullerene. Due to this structural resemblance, it is often referred to as a buckybowl.

View Article and Find Full Text PDF

Corannulenecarbaldehyde and corannulenylmethyl triphenylphosphonium bromide are combined through the Wittig olefination reaction to furnish dicorannulenylethene with 70% yield. A subsequent oxidative photocyclization leads to annulation of the corannulene nuclei to produce a CH nanographene structure in 59% yield. Interestingly, only the isomer of the dicorannulenylethene forms cocrystals with fullerene C through concave-convex and convex-convex π-π stacking interactions.

View Article and Find Full Text PDF

The introduction of chalcogen atoms into a polycyclic aromatic hydrocarbon structure is an established method to tune material properties. In the context of corannulene (C H ), a fragment of fullerene C , such structural adjustments have given rise to an emerging class of functional and responsive molecular materials. In this minireview, our aim is to discuss the synthesis and properties of such chalcogen (sulfur, selenium, and tellurium) derivatives of corannulene.

View Article and Find Full Text PDF

Monobromo-, tetrabromo-, and pentachloro-corannulene are subjected to nucleophilic substitution reactions with tolyl selenide and phenyl telluride-based nucleophiles generated in situ from the corresponding dichalcogenides. In the case of selenium nucleophile, the reaction provides moderate yields (52-77 %) of the targeted corannulene selenoethers. A subsequent oxidation of the selenium atoms proceeds smoothly to furnish corannulene selenones in 81-93 % yield.

View Article and Find Full Text PDF

The addition of amphiphilic triethylene glycol based corannulene molecules provides multiple Lewis basic sites that assist in perovskite grain growth, and improve the charge carrier collection and moisture resistance of perovskite solar cells. This study paves the way for utilization of more molecules from corannulene families in perovskite research.

View Article and Find Full Text PDF

It is shown that corannulene-based strained π-surfaces can be obtained through the use of mechanochemical Suzuki and Scholl reactions. Besides being solvent-free, the mechanochemical synthesis is high-yielding, fast, and scalable. Therefore, gram-scale preparation can be carried out in a facile and sustainable manner.

View Article and Find Full Text PDF

It is shown in this work that high electron affinity can be combined with high solubility and practical accessibility in corannulene-based electron acceptors. The electron affinity originates from the presence of three different types of electron-withdrawing groups (imide, sulfone, and trifluoromethyl) on the aromatic scaffold. The imide substituent further hosts a long alkyl chain (C H ) to boast solubility in a wide range of organic solvents.

View Article and Find Full Text PDF

Polyvinylcyclopropanes are an old class of polymers typically known for their low polymerization-induced shrinkage properties. In this work, we show that they are capable of exhibiting a thermally triggered aggregation process in aqueous solutions. The phase transition is sharp, tunable within the temperature range of 25-46 °C, and relatively insensitive to environmental conditions.

View Article and Find Full Text PDF

Here, we show that oxidation of exo-cyclic sulfur atoms enhances the molecular reduction potential of non-planar polycyclic aromatic hydrocarbons and allows for a systematic bridging of the electron affinity gap between corannulene, a fragment of fullerene C60, and the prevalent fullerene-based electron acceptor phenyl-C61-butyric acid methyl ester (PCBM).

View Article and Find Full Text PDF

Unlike typical polycyclic aromatic hydrocarbons, such as coronene, which are flat and planar, corannulene is a molecular bowl of carbon. It can be imagined as the cap region of fullerene C60 or an end of a single-walled carbon nanotube. This structural distinction manifests itself in unique properties.

View Article and Find Full Text PDF

The first family of extended and fluorinated corannulenes is prepared through a highly efficient and modular synthetic strategy. In this strategy, corannulene aldehyde could be combined with the fluorine-carrying phosphonium ylides to furnish stilbene-like vinylene precursors. A photochemically induced oxidative cyclization process of these precursors gives rise to the fluorinated and curved polycyclic aromatic hydrocarbons.

View Article and Find Full Text PDF

Ring-opening metathesis polymerization (ROMP) of buckybowl corannulene-based oxa-norbornadiene monomer is shown to give rise to polymeric nanomaterials with an average pore size of about 1.4 nm and a surface area of 49.2 m/g.

View Article and Find Full Text PDF

Eight new derivatives of corannulene have been synthesized, characterized, and examined for their water solubility and thermally triggered assembly behavior. To achieve this, the hydrophobic corannulene core was attached to the hydrophilic polyethylene glycol arm(s). Here, the substitution pattern as well as the arm length was varied systematically.

View Article and Find Full Text PDF

A new family of π-conjugated oligomers featuring a nonplanar polycyclic aromatic hydrocarbon, corannulene, and a planar aromatic unit, thiophene, is synthesized through an iterative metal-catalyzed coupling protocol. The two structural motifs are connected through an acetylene linkage. In the shorter oligomers, a thiophene unit is attached to one or two corannulenes.

View Article and Find Full Text PDF

The authors report on conductivity studies carried out on lithium solvated electron solutions (LiSES) prepared using two types of polyaromatic hydrocarbons (PAH), namely 1,3,5-triphenylbenzene and corannulene, as electron receptors. The solid PAHs were first dissolved in tetrahydrofuran (THF) to form a solution. Metallic lithium was then dissolved into these PAH/THF solutions to yield either blue or greenish blue solutions, colors which are indicative of the presence of solvated electrons.

View Article and Find Full Text PDF