Heart failure is a major public health problem, and inflammation is involved in its pathogenesis. Inflammatory Ly6C monocytes accumulate in mouse hearts after pressure overload and are detrimental to the heart; however, the types of cells that drive inflammatory cell recruitment remain uncertain. Here, we showed that a distinct subset of mouse cardiac fibroblasts became activated by pressure overload and recruited Ly6C monocytes to the heart.
View Article and Find Full Text PDFMesenchymal stromal cell (MSC) transplantation has been investigated as an advanced treatment of heart failure; however, further improvement of the therapeutic efficacy and mechanistic understanding are needed. Our previous study has reported that epicardial placement of fibrin sealant films incorporating rat amniotic membrane-derived (AM)-MSCs (MSC-dressings) could address limitations of traditional transplantation methods. To progress this finding toward clinical translation, this current study aimed to examine the efficacy of MSC-dressings using human AM-MSCs (hAM-MSCs) and the underpinning mechanism for myocardial repair.
View Article and Find Full Text PDFPost-operative adhesions are a leading cause of abdominal surgery-associated morbidity. Exposed fibrin clots on the damaged peritoneum, in which the mesothelial barrier is disrupted, readily adhere to surrounding tissues, resulting in adhesion formation. Here we show that resident F4/80CD206 peritoneal macrophages promptly accumulate on the lesion and form a 'macrophage barrier' to shield fibrin clots in place of the lost mesothelium in mice.
View Article and Find Full Text PDFReparative macrophages play an important role in cardiac repair post-myocardial infarction (MI). Bone marrow mononuclear cells (BM-MNCs) have been investigated as a donor for cell therapy but with limited clinical success. These cells, however, may be utilized as a source for reparative macrophages.
View Article and Find Full Text PDFStem cell therapy utilizing bone marrow mononuclear cells (BMC's) is a potential strategy to treat heart failure patients with improvement in symptom profile and cardiac function. We describe a rationale for concurrent BMC and left ventricular assist device therapy in selected heart failure patients. This combination therapy has demonstrated improved myocardial perfusion and cardiac function in patients with advanced ischemic cardiomyopathy.
View Article and Find Full Text PDF