The reactivity of the previously reported peroxo adducts [Fe2(μ-O2)(L(1))4(CH3CN)2](2+), and [Fe2(μ-O2)(L(2))4(CH3CN)2](2+), (L(1) = 2-(2'-pyridyl)benzimidazole and L(2) = 2-(2'-pyridyl)-N-methylbenzimidazole) towards H2O2 as catalase mimics, and towards various phenols as functional RNR-R2 mimics, is described. Kinetic, mechanistic and computational studies gave direct evidence for the involvement of the (μ-1,2-peroxo)diiron(iii) intermediate in the O-H activation process via formation of low-spin oxoiron(iv) species.
View Article and Find Full Text PDFThe interaction of Co(III) and Co(II) cobalamin (Cbl) and cobinamide (Cbi) with thiocyanate was examined with UV-vis and EPR spectra. S/N-linkage isomerism was explored on Co(III) and Co(II) Cbl and Cbi models using density functional theory (DFT; BP86, B3LYP). Performed calculations suggest the prevalence of isothiocyanato isomers over thiocyanato complexes on both Co(III) and Co(II) centers.
View Article and Find Full Text PDFSulfur monoxide, SO, is a relatively unstable molecule whose metal-coordinating properties have received little attention in bioinorganic chemistry. Reported here is a density functional theory (DFT) examination of the four possible oxidation states for a heme-SO/OS adduct previously proposed to be a part of the catalytic cycle of sulfite reductases. The FeOS and FeSO isomers are found to be degenerate in energy in most cases, suggesting that they both may be observable; the FeSO isomers would be the ones more likely to occur during the catalytic cycle of sulfite reductases - a cycle which indeed is initiated with the sulfite bound to iron via the sulfur, not via the oxygen.
View Article and Find Full Text PDF