Publications by authors named "Mihai Ciubotaru"

Intense electromagnetic fields (EMFs) induce DNA double stranded breaks (DSBs) in exposed lymphocytes.We study developing pre-B lymphocytes following V(D)J recombination at their Immunoglobulin light chain loci (IgL). Recombination physiologically induces DNA DSBs, and we tested if low doses of EMF irradiation affect this developmental stage.

View Article and Find Full Text PDF

Currently, used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes changes these viral enzymes, which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations.

View Article and Find Full Text PDF

V(D)J recombination is initiated by RAG1 and RAG2, which together with HMGB1 bind to a recombination signal sequence (12RSS or 23RSS) to form the signal complex (SC) and then capture a complementary partner RSS, yielding the paired complex (PC). Little is known regarding the structural changes that accompany the SC to PC transition or the structural features that allow RAG to distinguish its two asymmetric substrates. To address these issues, we analyzed the structure of the 12RSS in the SC and PC using fluorescence resonance energy transfer (FRET) and molecular dynamics modeling.

View Article and Find Full Text PDF

In all jawed vertebrates RAG (recombination activating gene) recombinase orchestrates V(D)J recombination in B and T lymphocyte precursors, assembling the V, D and J germline gene segments into continuous functional entities which encode the variable regions of their immune receptors. V(D)J recombination is the process by which most of the diversity of our specific immune receptors is acquired and is thought to have originated by domestication of a transposon in the genome of a vertebrate.  RAG acts similarly to the cut and paste transposases, by first binding two recombination signal DNA sequences (RSSs), which flank the two coding genes to be adjoined, in a process called synaptic or paired complex (PC) formation.

View Article and Find Full Text PDF

Discoveries is a new peer-reviewed, open access, online multidisciplinary and integrative journal publishing high impact reviews, experimental articles, perspective articles, and editorials from all areas related to medicine, biology, and chemistry, including but not limited to: Molecular and Cellular Biology, Biochemistry, Biophysics, Genomics, Proteomics, Biotechnology, Synthetic Biology, Bioengineering, Systems Biology, Bioinformatics, Translational Medicine, Medicine/ Clinical findings, Cognitive Science, Epidemiology, Global Medicine, Family Medicine, Organic/ Inorganic/ Physical Chemistry and Ethics in Science. Discoveries brings to the research community an outstanding editorial board that aims to address several of the innovations proposed above: there is no need to format the manuscript before submission, we have a rapid and efficient submission process, there is no need for a Cover Letter and we support the need for rules for validation of critical reagents, such as antibodies. Discoveries will aim to support high quality research on human subjects materials to provide relevance for non-human studies along with mechanistic insights into human biology and chemistry.

View Article and Find Full Text PDF

During V(D)J recombination, recombination activating gene proteins RAG1 and RAG2 generate DNA double strand breaks within a paired complex (PC) containing two complementary recombination signal sequences (RSSs), the 12RSS and 23RSS, which differ in the length of the spacer separating heptamer and nonamer elements. Despite the central role of the PC in V(D)J recombination, little is understood about its structure. Here, we use fluorescence resonance energy transfer to investigate the architecture of the 23RSS in the PC.

View Article and Find Full Text PDF

The products of recombination-activating genes RAG1 and RAG2 mediate the assembly of antigen receptor genes during lymphocyte development in a process known as V(D)J recombination. Lack of structural information for the RAG proteins has hindered mechanistic studies of this reaction. We report here the crystal structure of an essential DNA binding domain of the RAG1 catalytic core bound to its nonamer DNA recognition motif.

View Article and Find Full Text PDF

A critical step in V(D)J recombination is the synapsis of complementary (12/23) recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins to generate the paired complex (PC). Using a facilitated ligation assay and substrates that vary the helical phasing of the RSSs, we provide evidence that one particular geometric configuration of the RSSs is favored in the PC. To investigate this configuration further, we used fluorescent resonance energy transfer (FRET) to detect the synapsis of fluorescently labeled RSS oligonucleotides.

View Article and Find Full Text PDF

V(D)J recombination requires binding and synapsis of a complementary (12/23) pair of recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins, aided by a high-mobility group protein, HMG1 or HMG2. Double-strand DNA cleavage within this synaptic, or paired, complex is thought to involve DNA distortion or melting near the site of cleavage. Although V(D)J recombination normally occurs between RSSs located on the same DNA molecule (in cis), all previous studies that directly assessed RSS synapsis were performed with the two DNA substrates in trans.

View Article and Find Full Text PDF

Typical of many transcriptional regulatory proteins, the lambdoid bacteriophage repressors bind cooperatively to multiple sites on DNA. This cooperative binding is essential for establishment and maintenance of phage lysogeny. In the phage, two repressor homodimers, one bound at each of the adjacent operator sites, interact to form the tetramer that is necessary for the cooperative binding of the repressor.

View Article and Find Full Text PDF

The RAG1 and RAG2 proteins together constitute the nuclease that initiates the assembly of immunoglobulin and T cell receptor genes in a reaction known as V(D)J recombination. RAG1 plays a central role in recognition of the recombination signal sequence (RSS) by the RAG1/2 complex. To investigate the parameters governing the RAG1-RSS interaction, the murine core RAG1 protein (amino acids 377-1008) fused to a short Strep tag has been purified to homogeneity from bacteria.

View Article and Find Full Text PDF