Publications by authors named "Mihai Burai-Patrascu"

Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative central nervous system (CNS) disorder, characterized by focal inflammation, demyelination, irreversible axonal loss and neurodegeneration. The proposed mechanism involves auto-reactive T lymphocytes crossing the blood-brain barrier (BBB), contributing to inflammation and demyelination. Pro-inflammatory Th1 and Th17 lymphocytes are pivotal in MS pathogenesis, highlighting an imbalanced interaction with regulatory T cells.

View Article and Find Full Text PDF

Over the years, structure-based design programs and specifically docking small molecules to proteins have become prominent in drug discovery. However, many of these computational tools have been developed to primarily dock enzyme inhibitors (and ligands to other protein classes) relying heavily on hydrogen bonds and electrostatic and hydrophobic interactions. In reality, many drug targets either feature metal ions, can be targeted covalently, or are simply not even proteins (e.

View Article and Find Full Text PDF

Severe diseases such as the ongoing COVID-19 pandemic, as well as the previous SARS and MERS outbreaks, are the result of coronavirus infections and have demonstrated the urgent need for antiviral drugs to combat these deadly viruses. Due to its essential role in viral replication and function, 3CL (main coronaviruses cysteine-protease) has been identified as a promising target for the development of antiviral drugs. Previously reported SARS-CoV 3CL non-covalent inhibitors were used as a starting point for the development of covalent inhibitors of SARS-CoV-2 3CL.

View Article and Find Full Text PDF

Over the past decade, there has been increasing interest in covalent inhibition as a drug design strategy. Our own interest in the development of prolyl oligopeptidase (POP) and fibroblast activation protein α (FAP) covalent inhibitors has led us to question whether these two serine proteases were equal in terms of their reactivity toward electrophilic warheads. To streamline such investigations, we exploited both computational and experimental methods to investigate the influence of different reactive groups on both potency and binding kinetics using both our own series of POP inhibitors and others' discovered hits.

View Article and Find Full Text PDF

The ability of fluorine to serve as a hydrogen-bond acceptor has been debated for many years. Short fluorine-hydrogen contacts are thought to play a key role in stabilizing some complex supramolecular systems. To directly probe the existence of fluorine-hydrogen bonds, we have performed NMR spectroscopy and computational modeling on a series of C2'-fluorinated nucleosides.

View Article and Find Full Text PDF

We report the first syntheses of three nucleoside analogues, namely, 2',4'-diOMe-rU, 2'-OMe,4'-F-rU, and 2'-F,4'-OMe-araU, via stereoselective introduction of fluorine or methoxy functionalities at the C4'-α-position of a 4',5'-olefinic intermediate. Conformational analyses of these nucleosides and comparison to other previously reported 2',4'-disubstituted nucleoside analogues make it possible to evaluate the effect of fluorine and methoxy substitution on the sugar pucker, as assessed by NMR, X-ray diffraction, and computational methods. We found that C4'-α-F/OMe substituents reinforce the C3'-endo ( north) conformation of 2'-OMe-rU.

View Article and Find Full Text PDF

We designed novel 4'-modified 2'-deoxy-2'-fluorouridine (2'-F U) analogues with the aim to improve nuclease resistance and potency of therapeutic siRNAs by introducing 4'-C-methoxy (4'-OMe) as the alpha (C4'α) or beta (C4'β) epimers. The C4'α epimer was synthesized by a stereoselective route in six steps; however, both α and β epimers could be obtained by a nonstereoselective approach starting from 2'-F U. H NMR analysis and computational investigation of the α-epimer revealed that the 4'-OMe imparts a conformational bias toward the North-East sugar pucker, due to intramolecular hydrogen bonding and hyperconjugation effects.

View Article and Find Full Text PDF

Sugar puckering of nucleosides impacts nucleic acid structures; hence their biological function. Similarly, nucleoside-based therapeutics may adopt different conformations affecting their binding affinity, DNA incorporation, and excision rates. As a result, significant efforts have been made to develop nucleoside analogues adopting specific conformations to improve bioactivity and pharmacokinetic profiles of the corresponding nucleoside-containing drugs.

View Article and Find Full Text PDF