Based on a multitarget approach implementing rivastigmine-INDY hybrids 1, we identified a set of pseudo-irreversible carbamate-type inhibitors of BuChE that, after carbamate transfer at the active site serine residue, released the corresponding INDY analogues 2 endowed with DYRK1A/CLK1 kinases inhibitory properties. A SAR study and molecular docking investigation of both series of compounds 1 and 2 revealed that appropriate structural modifications at the carbamate moiety and at the -appendage of the benzothiazole core led to potent and selective BuChE inhibitors with IC up to 27 nM and potent DYRK1A and CLK1 inhibitors with IC up to 106 nM and 17 nM respectively. Pleasingly, identification of the matched pair of compounds 1b/2b with a good balance between inhibition of BuChE and DYRK1A/CLK1 kinases (IC = 68 nM and IC = 529/54 nM, respectively) further validated our multitarget approach based on a sequential mechanism of action.
View Article and Find Full Text PDFThe DYRK (Dual-specificity tyrosine phosphorylation-regulated kinase) family of protein kinases is involved in the pathogenesis of several neurodegenerative diseases. Among them, the DYRK1A protein kinase is thought to be implicated in Alzheimer's disease (AD) and Down syndrome, and as such, has emerged as an appealing therapeutic target. DYRKs are a subset of the CMGC (CDK, MAPKK, GSK3 and CLK) group of kinases.
View Article and Find Full Text PDFThe norepinephrine transporter (NET) plays an important role in neurotransmission and is involved in a multitude of psychiatric and neurodegenerative diseases. [I/I]-iodobenzylguanidine (MIBG) is a widely used radiotracer in the diagnosis and follow-up of peripheral neuroendocrine tumors overexpressing the norepinephrine transporter. MIBG does not cross the blood-brain barrier (BBB), and we have demonstrated the "proof-of-concept" that 1,4-dihydroquinoline/quinolinium salt as chemical delivery system (CDS) is a promising tool to deliver MIBG to the brain.
View Article and Find Full Text PDFThis work aims at exploiting both the enantioselective Tsuji allylation of allyl carbonate 6 and an organocatalytic aza-ene-type domino reaction between enal 3a and β-enaminone 4a to develop a straightforward access to all of the four possible stereoisomers of a donepezil-like 1,4-dihydropyridine 1a (er up to 99.5:0.5; overall yield up 64%), an anti-Alzheimer's prodrug candidate.
View Article and Find Full Text PDFHerein, we report a new class of dual binding site AChE inhibitor 4 designed to exert a central cholinergic activation thanks to a redox-activation step of a prodrug precursor 3. Starting from potent pseudo-irreversible quinolinium salts AChE inhibitors 2 previously reported, a new set of diversely substituted quinolinium salts 2a-p was prepared and assayed for their inhibitory activity against AChE. Structure-activity relationship (SAR) analysis of 2a-p coupled with molecular docking studies allowed us to determine which position of the quinolinium scaffold may be considered to anchor the phtalimide fragment presumed to interact with the peripheral anionic site (PAS).
View Article and Find Full Text PDFAs an extension of our previous work on donepezil-based "bio-oxidizable" prodrug approach, two new classes of N-benzylpyridinium donepezil analogues in tetralone B2 and acetophenone B3 series and a new set of indanone derivatives B1 were investigated along with the corresponding dihydropyridine prodrugs A1-3. A total of fifty one N-benzylpyridinium quaternary donepezil analogues B1-3 and twenty two prodrugs A1-3 were synthesized and evaluated for their inhibitory activities against hAChE and eqBuChE. While most prodrugs A1-3 were demonstrated to be inactive against AChE (IC > 10 μM), a large number of the corresponding N-benzylpyridinium salt B1-3 exhibited appealing three-to-one-digit nanomolar hAChE inhibitory activities and even reaching subnanomolar activity (IC = 0.
View Article and Find Full Text PDFThe development of delivery systems to transport some specific radiotracers across the blood-brain barrier (BBB) needs to be investigated for brain imaging. [F]FLT (3'-deoxy-3'-F-fluoro-l-thymidine), an analogue substrate of the nucleoside thymidine, has been developed as a proliferation tracer for oncological PET studies. Unfortunately, low-grade brain tumors are poorly visualized due to the low uptake of [F]FLT in brain tissue, preventing its use in PET imaging to detect brain tumors at an early stage.
View Article and Find Full Text PDFWith the aim of reducing side effects of acetylcholinesterase inhibitors (AChEIs) during symptomatic treatment of Alzheimer's disease, we report herein a new class of donepezil-based "bio-oxidizable" prodrugs 1 designed to be converted into dual binding site AChEIs 2. While most of indanone-derived N-benzylpyridinium salts 2 revealed to be highly potent dual binding site hAChEIs (IC up to 3 nM), outperforming the standard drug donepezil (IC = 11 nM), most of the corresponding 1,4-dihydropyridines 1 were found to be inactive. Promisingly, whereas the selected prodrug 1r showed good permeability in the PAMPA-BBB model and high in vitro antioxidant activity, its conversion to AChEI 2r could be easily achieved under mild conditions when incubated in various oxidizing media.
View Article and Find Full Text PDFAn efficient Pd-catalyzed carbonylation protocol is described for the coupling of a large panel of aryl, heteroaryl, benzyl, vinyl and allyl halides 2 with the unusual N-hydroxysuccinimidyl (NHS) formate 1 as a CO surrogate to afford the corresponding valuable NHS esters 3. High conversion to the coupling products was achieved with up to 98% yield by means of Pd(OAc)2/Xantphos catalyst system.
View Article and Find Full Text PDFWith the aim of improving the efficiency of marketed acetylcholinesterase (AChE) inhibitors in the symptomatic treatment of Alzheimer's disease, plagued by adverse effects arising from peripheral cholinergic activation, this work reports a biological evaluation of new central AChE inhibitors based on an original "bio-oxidizable" prodrug strategy. After peripheral injection of the prodrug 1a [IC50 > 1 mM (hAChE)] in mice, monitoring markers of central and peripheral cholinergic activation provided in vivo proof-of-concept for brain delivery of the drug 2a [IC50 = 20 nM (hAChE)] through central redox activation of 1a. Interestingly, peripheral cholinergic activation has been shown to be limited in time, likely due to the presence of a permanent positive charge in 2a promoting rapid elimination of the AChE inhibitor from the circulation of mice.
View Article and Find Full Text PDFThe therapeutic efficiency of palliative treatments of AD, mostly based on acetylcholinesterase (AChE) inhibitors, is marred by serious adverse effects due to peripheral activity of these AChE inhibitors. In the literature, a redox-based chemical delivery system (CDS) has been developed to enhance drugs distribution to the brain while reducing peripheral side effects. Herein, we disclose two new synthetic strategies for the preparation of 1,4-dihydroquinoline/quinolinium salt redox-based systems particularly well designed for brain delivery of drugs sensitive to alkylation reactions.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
February 2012
The title compound, C(21)H(17)ClO(3), which crystallizes as one of two possible oxo/hy-droxy-fulvene prototropic tautomers, possesses a strong intra-molecular O-H⋯O hydrogen bond that closes a seven-membered ring. The dihedral angles between the central five-membered ring and two pendant rings are 55.05 (9) and 44.
View Article and Find Full Text PDF