Composite membranes based on a polymer mixture solution of quaternized polysulfone (PSFQ), cellulose acetate phthalate (CAP), and polyvinylidene fluoride (PVDF) for biomedical applications were successfully obtained through the electrospinning technique. To ensure the polysulfone membranes' functionality in targeted applications, the selection of electrospinning conditions was essential. Moreover, understanding the geometric characteristics and morphology of fibrous membranes is crucial in designing them to meet the performance standards necessary for future biomedical applications.
View Article and Find Full Text PDFThe progress achieved in recent years in the biomedical field justifies the objective evaluation of new techniques and materials obtained by using silver in different forms as metallic silver, silver salts, and nanoparticles. Thus, the antibacterial, antiviral, antifungal, antioxidant, and anti-inflammatory activity of silver nanoparticles (AgNPs) confers to newly obtained materials characteristics that make them ideal candidates in a wide spectrum of applications. In the present study, the use of hydroxypropyl methyl cellulose (HPMC) in the new formulation, by embedding AgNPs with antibacterial activity, using poly(N-vinylpyrrolidone) (PVP) as a stabilizing agent was investigated.
View Article and Find Full Text PDFThe main concern of materials designed for firefighting protective clothing applications is heat protection, which can be experienced from any uncomfortably hot objects or inner spaces, as well as direct contact with flame. While textile fibers are one of the most important components of clothing, there is a constant need for the development of innovative fire-retardant textile fibers with improved thermal characteristics. Lately, inherently fire-resistant fibers have become very popular to provide better protection for firefighters.
View Article and Find Full Text PDFThe development of intelligent materials for protective equipment applications is still growing, with enormous potential to improve the safety of personnel functioning in specialized professions, such as firefighters. The design and production of such materials by the chemical modification of biodegradable semisynthetic polymers, accompanied by modern manufacturing techniques such as electrospinning, which may increase specific properties of the targeted material, continue to attract the interest of researchers. Phosphorus-modified poly(vinyl alcohol)s have been, thus, synthesized and utilized to prepare environmentally friendly electrospun mats.
View Article and Find Full Text PDFStarting from the bactericidal properties of functionalized polysulfone (PSFQ) and due to its excellent biocompatibility, biodegradability, and performance in various field, cellulose acetate phthalate (CAP) and polyvinyl alcohol (PVA), as well as their blends (PSFQ/CAP and PSFQ/PVA), have been tested to evaluate their applicative potential in the biomedical field. In this context, because the polymer processing starts from the solution phase, in the first step, the rheological properties were followed in order to assess and control the structural parameters. The surface chemistry analysis, surface properties, and antimicrobial activity of the obtained materials were investigated in order to understand the relationship between the polymers' structure-surface properties and organization form of materials (fibers and/or films), as important indicators for their future applications.
View Article and Find Full Text PDFThe current paper presents a strategic way to design and develop materials with properties adapted for various applications from biomedicine to environmental applications. In this context, blends of (hydroxypropyl)methyl cellulose (HPMC) and poly(vinylpyrrolidone) (PVP) were obtained to create new materials that can modulate the membrane properties in various fields. Thus, to explore the possibility of using the HPMC/PVP system in practical applications, the solubility parameters in various solvents were initially evaluated using experimental and theoretical approaches.
View Article and Find Full Text PDF