There is a recent trend in tissue engineering and regenerative medicine to use nanotechnology and bionanomaterials to obtain materials that mimic the surface properties of a natural tissue. From this perspective, nanolevel tissue engineering can be viewed as a novel anatomy of the future. In this paper, a novel titanium-based alloy is studied following this strategy.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
August 2013
In this study, polypyrrole (PPy) films were successfully synthesized on Ti6Al7Nb alloy by potentiostatic polymerization in the presence of poly(sodium 4-styrenesulfonate) (NaPSS), t-octylphenoxy polyethoxyethanol (Triton X-100) and N-dodecyl-β-D-maltoside (DM) surfactants. Atomic force microscopy (AFM) analysis of the PPy/surfactant composite films revealed a granular structure characterized by a lower surface roughness than un-modified PPy films. The results demonstrated that addition of surfactants, namely Triton X-100 and DM, can improve electrochemical film stability and corrosion resistance.
View Article and Find Full Text PDF