Metal halide perovskites (MHPs) are semiconductors with promising application in optoelectronic devices, particularly, in solar cell technologies. The chemical and electronic properties of MHPs at the surface and interfaces with adjacent layers dictate charge transfer within stacked devices and ultimately the efficiency of the latter. X-ray photoelectron spectroscopy is a powerful tool to characterize these material properties.
View Article and Find Full Text PDFIsolated active sites have great potential to be highly efficient and stable in heterogeneous catalysis, while enabling low costs due to the low transition metal content. Herein, we present results on the synthesis, first catalytic trials, and characterization of the GaRh phase and the hitherto not-studied GaRh phase. We used XRD and TEM for structural characterization, and with XPS, EDX we accessed the chemical composition and electronic structure of the intermetallic compounds.
View Article and Find Full Text PDFCharge transfer dynamics are of importance in functional materials used in devices ranging from transistors to photovoltaics. The understanding of charge transfer in particular of how fast electrons tunnel away from an excited state and where they end up, is necessary to tailor materials used in devices. We have investigated charge transfer dynamics in different forms of the layered two-dimensional material molybdenum disulphide (MoS2, in single crystal, nanocrystalline particles and crystallites in a reduced graphene oxide network) using core-hole clock spectroscopy.
View Article and Find Full Text PDFA NaF/KF postdeposition treatment (PDT) has recently been employed to achieve new record efficiencies of Cu(In,Ga)Se (CIGSe) thin film solar cells. We have used a combination of depth-dependent soft and hard X-ray photoelectron spectroscopy as well as soft X-ray absorption and emission spectroscopy to gain detailed insight into the chemical structure of the CIGSe surface and how it is changed by different PDTs. Alkali-free CIGSe, NaF-PDT CIGSe, and NaF/KF-PDT CIGSe absorbers grown by low-temperature coevaporation have been interrogated.
View Article and Find Full Text PDFThe interface formation upon vapor deposition of a metal onto a molecular organic semiconductor was studied using a well-defined complexation reaction between a metal and a porphyrin. Specifically, metallic cobalt (Co) was vapor deposited onto a thin film of 2H-tetraphenylporphyrin (2HTPP) at room temperature. The resulting interface was probed with Hard X-ray Photoelectron Spectroscopy (HAXPES) using photon energies between 2 and 6 keV to obtain a detailed depth profile of the chemical composition.
View Article and Find Full Text PDFPlatinum and iridium polycrystalline foils were oxidized electrochemically through anodization to create thin platinum and iridium hydrous oxide layers, which were analyzed through laboratory photoelectron spectroscopy during heating and time series (temperature-programmed spectroscopy). The films contain oxygen in the form of bound oxides, water, and hydroxides and were investigated by depth profiling with high-energy photoelectron spectroscopy. The Pt films are unstable and begin to degrade immediately after removal from the electrolyte to form core-shell structures with a metallic inner core and a hydrous oxide outer shell almost devoid of Pt.
View Article and Find Full Text PDFThe impact of the potassium fluoride post deposition treatment on CIGSe chalcopyrite absorbers is investigated by means of depth resolved hard X-ray photoemission spectroscopy of the near surface region. Two similar, slightly Cu-poor CIGSe absorbers were used with one being treated by potassium fluoride prior to the chemical bath deposition of an ultrathin CdS layer. The thickness of the CdS layer was chosen to be in the range of about 10 nm in order to allow the investigation of the CIGSe/CdS interface by the application of hard X-rays, increasing the information depth up to 30 nm.
View Article and Find Full Text PDFThe cathode material P2-Nax Co2/3 Mn2/9 Ni1/9 O2, which could be used in Na-ion batteries, was investigated through synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). Nondestructive analysis was made through the electrode/electrolyte interface of the first electrochemical cycle to ensure access to information not only on the active material, but also on the passivation layer formed at the electrode surface and referred to as the solid permeable interface (SPI). This investigation clearly shows the role of the SPI and the complexity of the redox reactions.
View Article and Find Full Text PDFDirect and inverse photoemission were used to study the impact of alkali fluoride postdeposition treatments on the chemical and electronic surface structure of Cu(In,Ga)Se2 (CIGSe) thin films used for high-efficiency flexible solar cells. We find a large surface band gap (E(g)(Surf), up to 2.52 eV) for a NaF/KF-postdeposition treated (PDT) absorber significantly increases compared to the CIGSe bulk band gap and to the Eg(Surf) of 1.
View Article and Find Full Text PDFA Li4Ti5O12 (LTO) film was coated as buffer layer onto a LiNi0.5Mn1.5O4 (LNMO) high-voltage cathode, and after cycling of the cathode in a battery electrolyte, the LTO film was investigated by means of synchrotron radiation based hard X-ray photoelectron spectroscopy (HAXPES).
View Article and Find Full Text PDFWe have employed soft and hard X-ray photoelectron spectroscopies to study the depth-dependent chemical composition of mixed-halide perovskite thin films used in high-performance solar cells. We detect substantial amounts of metallic lead in the perovskite films, which correlate with significant density of states above the valence band maximum. The metallic lead content is higher in the bulk of the perovskite films than at the surface.
View Article and Find Full Text PDFThe electronic structure and chemical composition of efficient CH3NH3PbI3 perovskite solar cell materials deposited onto mesoporous TiO2 were studied using photoelectron spectroscopy with hard X-rays. With this technique, it is possible to directly measure the occupied energy levels of the perovskite as well as the TiO2 buried beneath and thereby determine the energy level matching of the interface. The measurements of the valence levels were in good agreement with simulated density of states, and the investigation gives information on the character of the valence levels.
View Article and Find Full Text PDFSilicon is a very good candidate for the next generation of negative electrodes for Li-ion batteries, due to its high rechargeable capacity. An important issue for the implementation of silicon is the control of the chemical reactivity at the electrode/electrolyte interface upon cycling, especially when using nanometric silicon particles. In this work we observed improved performances of Li//Si cells by using the new salt lithium bis(fluorosulfonyl)imide (LiFSI) with respect to LiPF6.
View Article and Find Full Text PDFWe developed a mathematical analysis method of reflectometry data and used it to characterize the internal structure of TiO/SiO/Si and Ti/SiO/Si stacks. Atomic concentration profiles of all the chemical elements composing the samples were reconstructed from the analysis of the reflectivity curves measured versus the incidence angle at different soft x-ray reflection (SXR) photon energies. The results were confirmed by the conventional techniques of hard x-ray photoelectron spectroscopy (HXPES) and high-resolution transmission electron microscopy (HRTEM).
View Article and Find Full Text PDF