Jotun springs in Svalbard, Norway, is a rare warm environment in the Arctic that actively forms travertine. In this study, we assessed the microbial ecology of Jotun's active (aquatic) spring and dry spring transects. We evaluated the microbial preservation potential and mode, as well as the astrobiological relevance of the travertines to marginal carbonates mapped at Jezero Crater on Mars (the Mars 2020 landing site).
View Article and Find Full Text PDFIntroduction: Continental hydrothermal systems (CHSs) are geochemically complex, and they support microbial communities that vary across substrates. However, our understanding of these variations across the complete range of substrates in CHS is limited because many previous studies have focused predominantly on aqueous settings.
Methods: Here we used metagenomes in the context of their environmental geochemistry to investigate the ecology of different substrates (i.
The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems ( environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life.
View Article and Find Full Text PDFAirborne microplastics (MPs) could have negative impacts on human health and pollute water, soil, and sediment. This study explored the distributions, compositions, and morphology of airborne microplastics in the indoor and ambient air in New Jersey, United States. Microplastic fibers, films, and fragments of Polystyrene (PS), Polyethylene terephthalate (PET), Polyethyelene (PE), Polyvinyl chloride (PVC) and Polypropylene (PP) were identified in office, hallway, classroom, and single-family house in this study.
View Article and Find Full Text PDFCarbonate rocks record the oldest forms of life on Earth, and their geologic reconstruction requires multiple methods to determine physical and chemical processes before conclusions of ancient biosignatures are made. Since crystal orientation within rock fabric may be used to infer geologic settings, we present here a complementary Raman method to study the orientation of calcite (CaCO) and dolomite [CaMg (CO)] minerals. The relative peak intensity ratio of the carbonate lattice E modes T and L reveals the crystallographic orientation of calcite and dolomite with respect to the incident light polarization.
View Article and Find Full Text PDFThe hypersaline sediment and groundwater of playa lake, Lake Lucero, at the White Sands National Monument in New Mexico were examined for microbial community composition, geochemical gradients, and mineralogy during the dry season along a meter and a half depth profile of the sediment the groundwater interface. Lake Lucero is a highly dynamic environment, strongly characterized by the capillary action of the groundwater, the extreme seasonality of the climate, and the hypersalinity. Sediments are predominantly composed of gypsum with minor quartz, thenardite, halite, quartz, epsomite, celestine, and clays.
View Article and Find Full Text PDFLake Lucero is a gypsum-rich, hypersaline, ephemeral playa located on the southern part of the Alkali Flat at the White Sands National Monument (WSNM), New Mexico, USA. This modern playa setting provides a dynamic extreme environment that changes from a freshwater lake to a hypersaline dry desert during the year. We investigated the microbial diversity (bacteria, archaea, and microbial eukaryotes) of the Lake Lucero sediments using 16S- and 18S-based amplicon sequencing approach and explored the diversity patterns in different geochemical microenvironments.
View Article and Find Full Text PDFWe report data on the martian meteorite Northwest Africa (NWA) 7034, which shares some petrologic and geochemical characteristics with known martian meteorites of the SNC (i.e., shergottite, nakhlite, and chassignite) group, but also has some unique characteristics that would exclude it from that group.
View Article and Find Full Text PDF