Publications by authors named "Mihaela Buciumeanu"

The purpose of the present study was to experimentally assess the synergistic effects of wear and corrosion on NiTi alloy in comparison with Ti-6Al-4V alloy, the most extensively used titanium alloy in biomedical applications. Both alloys were processed by an additive manufacturing laser beam directed energy deposition (LB-DED) technique, namely laser engineered net shaping (LENS), and analyzed via tribocorrosion tests by using the ball-on-plate configuration. The tests were carried out in phosphate buffered saline solution at 37 °C under open circuit potential (OCP) to simulate the body environment and temperature.

View Article and Find Full Text PDF

The use of zirconia as an alternative biomaterial for titanium implants has been increasing due to its biocompatibility, favorable aesthetic features, less potential for early plaque accumulation and mechanical properties. Despite the developed efforts, strategies to promote an effective osseointegration are still enough. In this sense and combining the silica properties to improve bone formation with the micropatterning guidance characteristics, silica coatings with micropatterns were designed and evaluated regarding their hydrophilicity and integrity through resistance to scratch and friction tests against femoral bone plates (simulating implant insertion).

View Article and Find Full Text PDF

Recently, the production of well-defined patterned surfaces with random or regular micro and nano-features has brought new opportunities for research and development in the field of tissue engineering and regenerative medicine. Among advanced micro and nano processing technologies, laser surface texturing (LST) stands out due to its simplicity, flexibility, precision, reproducibility and relatively low cost. This work studies the development of patterned surfaces controlled by of LST into biomedical grade V titanium, Ti-6Al-4V-alloy.

View Article and Find Full Text PDF

PEEK is a promising polymer possessing high mechanical strength and biocompatibility and therefore it can be associated to titanium for biomedical applications. This study aimed at producing Ti6Al4V-PEEK joints with enhanced adhesion through laser-structuring Ti6Al4V treatments. Ti6Al4V cylindrical substrates were prepared by two types of surface treatments: alumina blasting and laser structuring.

View Article and Find Full Text PDF

In dentistry, prosthetic structures must be able to support masticatory loads combined with a high biocompatibility and wear resistance in the presence of a corrosive environment. In order to improve the simultaneous wear and corrosion response of highly biocompatible prosthetic structures, a veneering poly-ether-ether-ketone (PEEK) to Ti6Al4V substrate was assessed by tribocorrosion analyses under conditions mimicking the oral environment. Samples were synthesized by hot pressing the PEEK veneer onto Ti6Al4V cylinders.

View Article and Find Full Text PDF