Advances in radiotherapy, particularly the exploration of alternative radiation types such as carbon ions have updated our understanding of its effects and applicability on chondrosarcoma cells. Here we compare the optical effects produced by carbon ions (CI) and X-rays (XR) radiations on chondrosarcoma cells nuclei and set an automated method for evaluating the radiation-induced alterations without the need of chemical marking. Hyperspectral images (HSI) of SW1353 chondrosarcoma line carry detectable optical changes of the cells irradiated either with CI or XR compared to non-irradiated ones (REF).
View Article and Find Full Text PDFNew therapeutic approaches are needed for the management of the highly chemo- and radioresistant chondrosarcoma (CHS). In this work, we used polyethylene glycol-encapsulated iron oxide nanoparticles for the intracellular delivery of the chemotherapeutic doxorubicin (IONP) to augment the cytotoxic effects of carbon ions in comparison to photon radiation therapy. The in vitro biological effects were investigated in SW1353 chondrosarcoma cells focusing on the following parameters: cell survival using clonogenic test, detection of micronuclei (MN) by cytokinesis blocked micronucleus assay and morphology together with spectral fingerprints of nuclei using enhanced dark-field microscopy (EDFM) assembled with a hyperspectral imaging (HI) module.
View Article and Find Full Text PDF