Endothelin receptor A (ET), a class A G protein-coupled receptor (GPCR), is a promising tumor-associated antigen due to its close association with the progression and metastasis of many types of cancer, such as colorectal, breast, lung, ovarian, and prostate cancer. However, only small-molecule drugs have been developed as ET antagonists with anticancer effects. In a previous study, we identified an antibody (AG8) with highly selective binding to human ET through screening of a human naïve immune antibody library.
View Article and Find Full Text PDFThe pH-selective interaction between the immunoglobulin G (IgG) fragment crystallizable region (Fc region) and the neonatal Fc receptor (FcRn) is critical for prolonging the circulating half-lives of IgG molecules through intracellular trafficking and recycling. By using directed evolution, we successfully identified Fc mutations that improve the pH-dependent binding of human FcRn and prolong the serum persistence of a model IgG antibody and an Fc-fusion protein. Strikingly, trastuzumab-PFc29 and aflibercept-PFc29, a model therapeutic IgG antibody and an Fc-fusion protein, respectively, when combined with our engineered Fc (Q311R/M428L), both exhibited significantly higher serum half-lives in human FcRn transgenic mice than their counterparts with wild-type Fc.
View Article and Find Full Text PDFEndothelin receptor A (ET), a class A G-protein-coupled receptor (GPCR), is involved in the progression and metastasis of colorectal, breast, lung, ovarian, and prostate cancer. We overexpressed and purified human endothelin receptor type A in Escherichia coli and reconstituted it with lipid and membrane scaffold proteins to prepare an ET nanodisc as a functional antigen with a structure similar to that of native GPCR. By screening a human naive immune single-chain variable fragment phage library constructed in-house, we successfully isolated a human anti-ET antibody (AG8) exhibiting high specificity for ET in the β-arrestin Tango assay and effective inhibitory activity against the ET-1-induced signaling cascade via ET using either a CHO-K1 cell line stably expressing human ET or HT-29 colorectal cancer cells, in which AG8 exhibited IC values of 56 and 51 nM, respectively.
View Article and Find Full Text PDFAssociation of FcRn molecules to the Fc region of IgG in acidified endosomes and subsequent dissociation of the interaction in neutral pH serum enables IgG molecules to be recycled for prolonged serum persistence after internalization by endothelial cells, rather than being degraded in the serum and in the lysosomes inside the cells. Exploiting this intracellular trafficking and recycling mechanism, many researchers have engineered the Fc region to further extend the serum half-lives of therapeutic antibodies by optimizing the pH-dependent IgG Fc-FcRn interaction, and have generated various Fc variants exhibiting significantly improved circulating half-lives of therapeutic IgG antibodies. In order to estimate pharmacokinetic profiles of IgG Fc variants in human serum, not only a variety of in vitro techniques to determine the equilibrium binding constants and instantaneous rate constants for pH-dependent FcRn binding, but also diverse in vivo animal models including wild-type mouse, human FcRn transgenic mouse (Tg32 and Tg276), humanized mouse (Scarlet), or cynomolgus monkey have been harnessed.
View Article and Find Full Text PDFThe immunoglobulin G (IgG) molecule has a long circulating serum half-life (~3 weeks) through pH- dependent FcRn binding-mediated recycling. To hijack the intracellular trafficking and recycling mechanism of IgG as a way to extend serum persistence of non-antibody therapeutic proteins, we have evolved the ectodomain of a low-affinity human FcγRIIa for enhanced binding to the lower hinge and upper CH2 region of IgG, which is very far from the FcRn binding site (CH2-CH3 interface). High-throughput library screening enabled isolation of an FcγRIIa variant (2A45.
View Article and Find Full Text PDFThe Fc region of IgG antibodies is crucial for binding to Fc receptors expressed on the surfaces of various immune leukocytes and eliciting therapeutic effector functions such as clearance of antibody-opsonized tumor cells. Despite abrogated Fc gamma receptor (FcγR) binding and therapeutic effector function in the absence of N-linked glycosylation at Asn297, the aglycosylated Fc region of IgG antibodies has bioprocessing advantages such as the absence of glycan heterogeneity and simple bacterial antibody production. Therefore, these antibodies have been comprehensively engineered as effector functional units for human therapy.
View Article and Find Full Text PDFBackground: Immunotoxins consisting of a toxin from bacteria or plants and a targeting module have been developed as potent anti-cancer therapeutics. The majority of them, especially those in preclinical or clinical testing stages, are fusion proteins of a toxin and antibody fragment. Immunotoxins based on full-length antibodies are less studied, even though the fragment crystallizable (Fc) domain plays an important role in regulating the concentration of immunoglobulin G (IgG) in the serum and in antibody-mediated immune responses against pathogens.
View Article and Find Full Text PDFMultimer formation is indispensable to the intrinsicbiologicalfunctions of many natural proteins. For example, the human immunoglobulin G (IgG) antibody has two variable regions (heavy chain variable domain [VH] and light chain variable domain [VL]) that must be assembled for specific antigen binding, and homodimerization of the antibody's Fc domain is essential for eliciting therapeutic effector functions. For the more efficient high-throughput directed evolution of multimeric proteins with ease of cultivation and handling, here we report a membrane protein drift and assembly (MPDA) system, in which a multimeric protein is displayed on a bacterial inner membrane by drifting and auto-assembling membrane-anchored subunit polypeptides.
View Article and Find Full Text PDFFcγRIIIa, which is predominantly expressed on the surface of natural killer cells, plays a key role in antibody-dependent cell-mediated cytotoxicity (ADCC), a major effector function of therapeutic IgG antibodies that results in the death of aberrant cells. Despite the potential uses of aglycosylated IgG antibodies, which can be easily produced in bacteria and do not have complicated glycan heterogeneity issues, they show negligible binding to FcγRIIIa and abolish the activation of immune leukocytes for tumor cell clearance, in sharp contrast to most glycosylated IgG antibodies used in the clinical setting. For directed evolution of aglycosylated Fc variants that bind to FcγRIIIa and, in turn, exert potent ADCC effector function, we randomized the aglycosylated Fc region of full-length IgG expressed on the inner membrane of Escherichia coli.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) are one of the most attractive therapeutic target classes because of their critical roles in intracellular signaling and their clinical relevance to a variety of diseases, including cancer, infection and inflammation. However, high conformational variability, the small exposed area of extracellular epitopes and difficulty in the preparation of GPCR antigens have delayed both the isolation of therapeutic anti-GPCR antibodies as well as studies on the structure, function and biochemical mechanisms of GPCRs. To overcome the challenges in generating highly specific anti-GPCR antibodies with enhanced efficacy and safety, various forms of antigens have been successfully designed and employed for screening with newly emerged systems based on laboratory animal immunization and high-throughput-directed evolution.
View Article and Find Full Text PDF