Aberration of the "gut-liver axis" contributes to the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we use multi-omics to analyze the gut microbiota composition and metabolic profile of patients with type-2 diabetes mellitus (T2DM). T2DM patients were screened for liver disease by blood tests, ultrasound, and liver stiffness measurements.
View Article and Find Full Text PDFACR Open Rheumatol
November 2023
Objective: We investigated intestinal permeability and fecal, plasma, and urine metabolomic profiles in methotrexate-treated active psoriatic arthritis (PsA) and how this related to clinical response following one sham or fecal microbiota transplantation (FMT).
Methods: This exploratory study is based on the FLORA trial cohort, in which 31 patients with moderate-to-high peripheral PsA disease activity, despite at least 3 months of methotrexate-treatment, were included in a 26-week, double-blind, 1:1 randomized, sham-controlled trial. Participants were randomly allocated to receive either one healthy donor FMT (n = 15) or sham (n = 16) via gastroscopy.
A synthetic circuit in a biological system involves the designed assembly of genetic elements, biomolecules, or cells to create a defined function. These circuits are central in synthetic biology, enabling the reprogramming of cellular behavior and the engineering of cells with customized responses. In cancer therapeutics, engineering T cells with circuits have the potential to overcome the challenges of current approaches, for example, by allowing specific recognition and killing of cancer cells.
View Article and Find Full Text PDFIntroduction: Ulcerative colitis (UC) differs across geography and ethnic groups. Gut microbial diversity plays a pivotal role in disease pathogenesis and differs across ethnic groups. The functional diversity in microbial-driven metabolites may have a pathophysiologic role and offer new therapeutic avenues.
View Article and Find Full Text PDFBackground: Almonds contain lipid, fiber, and polyphenols and possess physicochemical properties that affect nutrient bioaccessibility, which are hypothesized to affect gut physiology and microbiota.
Objectives: To investigate the impact of whole almonds and ground almonds (almond flour) on fecal bifidobacteria (primary outcome), gut microbiota composition, and gut transit time.
Methods: Healthy adults (n = 87) participated in a parallel, 3-arm randomized controlled trial.
Background: Psoriasis is a chronic inflammatory disease of the skin affecting 2-3% of UK population. 30% of people affected by psoriasis will develop a distinct form of arthritis within 10 years of the skin condition onset. Although the pathogenesis of psoriatic arthritis is still unknown, there is a genetic predisposition triggered by environmental factors.
View Article and Find Full Text PDFBackground: Recurrent Clostridioides difficile infection (CDI) in patients with inflammatory bowel disease (IBD) is a clinical challenge. Fecal microbiota transplantation (FMT) has emerged as a recurrent CDI therapy. Anecdotal concerns exist regarding worsening of IBD activity; however, prospective data among IBD patients are limited.
View Article and Find Full Text PDFElevated postprandial glucose (PPG) is a significant risk factor for non-communicable diseases globally. Currently, there is a limited understanding of how starch structures within a carbohydrate-rich food matrix interact with the gut luminal environment to control PPG. Here, we use pea seeds (Pisum sativum) and pea flour, derived from two near-identical pea genotypes (BC1/19RR and BC1/19rr) differing primarily in the type of starch accumulated, to explore the contribution of starch structure, food matrix and intestinal environment to PPG.
View Article and Find Full Text PDFFecal microbiota transplant (FMT) is a highly-effective therapy for recurrent infection (rCDI), and shows promise for certain non-CDI indications. However, at present, its mechanisms of efficacy have remained poorly understood. Recent studies by our laboratory have noted the particular key importance of restoration of gut microbe-metabolite interactions in the ability of FMT to treat rCDI, including the impact of FMT upon short chain fatty acid (SCFAs) and bile acid metabolism.
View Article and Find Full Text PDFClin Gastroenterol Hepatol
April 2020
Background & Aims: Studies in mice have shown that the intestinal microbiota can contribute to obesity via the anorexigenic gut hormone glucagon-like peptide 1 (GLP1) and bile acids, which affect lipid metabolism. We performed a randomized, placebo-controlled, pilot study of the effects of fecal microbiota transplantation (FMT) in obese, metabolically uncompromised patients.
Methods: We performed a double-blind study of 22 obese patients (body mass index [BMI] ≥5 kg/m) without a diagnosis of diabetes, nonalcoholic steatohepatitis, or metabolic syndrome.