Publications by authors named "Miguel-Angel Gonzalez Ballester"

Article Synopsis
  • Accurate segmentation of intervertebral discs (IVDs) is essential for diagnosing spinal conditions, but traditional deep learning methods require large annotated datasets that are difficult to obtain.
  • This research introduces a self-supervised learning approach that uses unlabeled multi-domain data for effective IVD segmentation in MRI scans, capturing subtle intensity variations characteristic of spinal structures.
  • The model outperformed traditional methods, demonstrating its ability to manage domain shifts and achieve higher accuracy, while also suggesting potential applications in improving generalizability across other medical imaging fields.
View Article and Find Full Text PDF

Objective: This study aims to test the hypothesis that breathing can be directly linked to postural stability and psychological health. A protocol enabling the simultaneous analysis of breathing, posture, and emotional levels in university students is presented. This aims to verify the possibility of defining a triangular link and to test the adequacy of various measurement techniques.

View Article and Find Full Text PDF

Polyps are well-known cancer precursors identified by colonoscopy. However, variability in their size, appearance, and location makes the detection of polyps challenging. Moreover, colonoscopy surveillance and removal of polyps are highly operator-dependent procedures and occur in a highly complex organ topology.

View Article and Find Full Text PDF

Background: Maternal suboptimal nutrition and high stress levels are associated with adverse fetal and infant neurodevelopment.

Objective: This study aimed to investigate if structured lifestyle interventions involving a Mediterranean diet or mindfulness-based stress reduction during pregnancy are associated with differences in fetal and neonatal brain development.

Study Design: This was a secondary analysis of the randomized clinical trial Improving Mothers for a Better Prenatal Care Trial Barcelona that was conducted in Barcelona, Spain, from 2017 to 2020.

View Article and Find Full Text PDF

The early detection of glaucoma is essential in preventing visual impairment. Artificial intelligence (AI) can be used to analyze color fundus photographs (CFPs) in a cost-effective manner, making glaucoma screening more accessible. While AI models for glaucoma screening from CFPs have shown promising results in laboratory settings, their performance decreases significantly in real-world scenarios due to the presence of out-of-distribution and low-quality images.

View Article and Find Full Text PDF

Background: Dynamic functional connectivity (dFC) alterations have been reported in patients with adult-onset and chronic psychosis. We sought to examine whether such abnormalities were also observed in patients with first episode, adolescent-onset psychosis (AOP), in order to rule out potential effects of chronicity and protracted antipsychotic treatment exposure. AOP has been suggested to have less diagnostic specificity compared to psychosis with onset in adulthood and occurs during a period of neurodevelopmental changes in brain functional connections.

View Article and Find Full Text PDF

Background: We report that myocardial insulin resistance (mIR) occurs in around 60% of patients with type 2 diabetes (T2D) and was associated with higher cardiovascular risk in comparison with patients with insulin-sensitive myocardium (mIS). These two phenotypes (mIR vs. mIS) can only be assessed using time-consuming and expensive methods.

View Article and Find Full Text PDF

The objective of this study was to investigate the relationship between the choice of clinical treatment, gait functionality, and kinetics in patients with comparable knee osteoarthritis. This was an observational case-control study. The study was conducted in a university biomechanics laboratory.

View Article and Find Full Text PDF

The use of machine learning (ML) approaches to target clinical problems is called to revolutionize clinical decision-making in cardiology. The success of these tools is dependent on the understanding of the intrinsic processes being used during the conventional pathway by which clinicians make decisions. In a parallelism with this pathway, ML can have an impact at four levels: for data acquisition, predominantly by extracting standardized, high-quality information with the smallest possible learning curve; for feature extraction, by discharging healthcare practitioners from performing tedious measurements on raw data; for interpretation, by digesting complex, heterogeneous data in order to augment the understanding of the patient status; and for decision support, by leveraging the previous steps to predict clinical outcomes, response to treatment or to recommend a specific intervention.

View Article and Find Full Text PDF

Objective: Irreversible electroporation (IRE) is a non-thermal tissue ablation therapy which is induced by applying high voltage waveforms across electrode pairs. When multiple electrode pairs are sequentially used, the treatment volume (TV) is typically computed as the geometric union of the TVs of individual pairs. However, this method neglects that some regions are exposed to overlapping treatments.

View Article and Find Full Text PDF

Purpose: Virtual monoenergetic images (VMI) obtained from Dual-Energy Computed Tomography (DECT) with iodinated contrast are used in radiotherapy of the Head and Neck to improve the delineation of target volumes and organs at-risk (OAR). The energies used to vary from 40 to 70 keV, but noise at low keV and the use of Single Energy CT (SECT) at low kV settings may shrink this interval. There is no guide about how to find out the optimal range where VMI has a significant improvement related to SECT images.

View Article and Find Full Text PDF

3D echocardiography is an increasingly popular tool for assessing cardiac remodelling in the right ventricle (RV). It allows quantification of the cardiac chambers without any geometric assumptions, which is the main weakness of 2D echocardiography. However, regional quantification of geometry and function is limited by the lower spatial and temporal resolution and the scarcity of identifiable anatomical landmarks, especially within the ventricular cavity.

View Article and Find Full Text PDF

Background And Objective: We present SYLVIUS, a software platform intended to facilitate and improve the complex workflow required to diagnose and surgically treat drug-resistant epilepsies. In complex epilepsies, additional invasive information from exploration with stereoencephalography (SEEG) with deep electrodes may be needed, for which the input from different diagnostic methods and clinicians from several specialties is required to ensure diagnostic efficacy and surgical safety. We aim to provide a software platform with optimal data flow among the different stages of epilepsy surgery to provide smooth and integrated decision making.

View Article and Find Full Text PDF

The ε4 allele of the gene Apolipoprotein E is the major genetic risk factor for Alzheimer's Disease. APOE ε4 has been associated with changes in brain structure in cognitively impaired and unimpaired subjects, including atrophy of the hippocampus, which is one of the brain structures that is early affected by AD. In this work we analyzed the impact of APOE ε4 gene dose and its association with age, on hippocampal shape assessed with multivariate surface analysis, in a ε4-enriched cohort of n = 479 cognitively healthy individuals.

View Article and Find Full Text PDF

Fetal ventriculomegaly (VM) is a condition in which one or both lateral ventricles are enlarged, and is diagnosed as an atrial diameter larger than 10 mm. Evidence of altered cortical folding associated with VM has been shown in the literature. However, existing works use a single scalar value such as diagnosis or lateral ventricular volume to characterize VM and study its relationship with alterations in cortical folding, thus failing to reveal the spatially-heterogeneous associations.

View Article and Find Full Text PDF

Twin-to-twin transfusion syndrome (TTTS) is a serious condition that may occur in pregnancies when two or more fetuses share the same placenta. It is characterized by abnormal vascular connections in the placenta that cause blood to flow unevenly between the babies. If left untreated, perinatal mortality occurs in 90% of cases, whilst neurological injuries are still present in TTTS survivors.

View Article and Find Full Text PDF

Tracking cells is one of the main challenges in biology, as it often requires time-consuming annotations and the images can have a low signal-to-noise ratio while containing a large number of cells. Here we present two methods for detecting and tracking cells using the open-source Fiji and ilastik frameworks. A straightforward approach is described using Fiji, consisting of a pre-processing and segmentation phase followed by a tracking phase, based on the overlapping of objects along the image sequence.

View Article and Find Full Text PDF

The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy.

View Article and Find Full Text PDF

Recent advances in fetal magnetic resonance imaging (MRI) open the door to improved detection and characterization of fetal and placental abnormalities. Since interpreting MRI data can be complex and ambiguous, there is a need for robust computational methods able to quantify placental anatomy (including its vasculature) and function. In this work, we propose a novel fully-automated method to segment the placenta and its peripheral blood vessels from fetal MRI.

View Article and Find Full Text PDF

An abdominal aortic aneurysm (AAA) is a ballooning of the abdominal aorta, that if not treated tends to grow and rupture. Computed Tomography Angiography (CTA) is the main imaging modality for the management of AAAs, and segmenting them is essential for AAA rupture risk and disease progression assessment. Previous works have shown that Convolutional Neural Networks (CNNs) can accurately segment AAAs, but have the limitation of requiring large amounts of annotated data to train the networks.

View Article and Find Full Text PDF

In the field of multi-atlas segmentation, patch-based approaches have shown promising results in the segmentation of biomedical images. In the most common approach, registration is used to warp the atlases to the target space and then the warped atlas labelmaps are fused into a consensus segmentation based on local appearance information encoded in form of patches. The registration step establishes spatial correspondence, which is important to obtain anatomical priors.

View Article and Find Full Text PDF

Methods using statistical shape and appearance models have been proposed to analyze bone mineral density (BMD) in 3D from dual energy X-ray absorptiometry (DXA) scans. This paper presents a retrospective case-control study assessing the association of DXA-derived 3D measurements with osteoporotic hip fracture in postmenopausal women. Patients who experienced a hip fracture between 1 and 6 years from baseline and age-matched controls were included in this study.

View Article and Find Full Text PDF

Background: Muscular co-contraction is a strategy commonly used by elders with the aim to increase stability. However, co-contraction leads to stiffness which in turns reduces stability. Some literature seems to suggest an opposite approach and to point out relaxation as a way to improve stability.

View Article and Find Full Text PDF

Fetal imaging is a burgeoning topic. New advancements in both magnetic resonance imaging and (3D) ultrasound currently allow doctors to diagnose fetal structural abnormalities such as those involved in twin-to-twin transfusion syndrome, gestational diabetes mellitus, pulmonary sequestration and hypoplasia, congenital heart disease, diaphragmatic hernia, ventriculomegaly, etc. Considering the continued breakthroughs in utero image analysis and (3D) reconstruction models, it is now possible to gain more insight into the ongoing development of the fetus.

View Article and Find Full Text PDF

Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment.

View Article and Find Full Text PDF