Background: The coronavirus disease has led to an exhaustive exploration of the SARS-CoV-2 genome. Despite the amount of information accumulated, the prediction of short RNA motifs encoding peptides mediating protein-protein or protein-drug interactions has received limited attention.
Objective: The study aims to predict short RNA motifs that are interspersed in the SARS-CoV-2 genome.
The hollow protein capsids from a number of different viruses are being considered for multiple biomedical or nanotechnological applications. In order to improve the applied potential of a given viral capsid as a nanocarrier or nanocontainer, specific conditions must be found for achieving its faithful and efficient assembly in vitro. The small size, adequate physical properties and specialized biological functions of the capsids of parvoviruses such as the minute virus of mice (MVM) make them excellent choices as nanocarriers and nanocontainers.
View Article and Find Full Text PDFProtein-based nanostructured materials are being developed for many biomedical and nanotechnological applications. Despite their many desirable features, protein materials are highly susceptible to disruption by mechanical stress and fatigue. This study is aimed to increase fatigue resistance and enhance self-healing of a natural protein-based supramolecular nanomaterial through permanent genetic modification.
View Article and Find Full Text PDFPicornaviridae family includes several viruses of great economic and medical importance. Among all members of the family we focused our attention on the human rhinovirus, the most important etiologic agent of the common cold and on the foot-and-mouth disease virus that cause of an economically important disease in cattle. Despite the low sequence similarity of the polyprotein coding open reading frames of these highly divergent picornaviruses, they have in common structural and functional similarities including a similar genomic organization, a capsid structure composed of 60 copies of four different proteins, or 3D-structures showing similar general topology, among others.
View Article and Find Full Text PDFIcosahedral viral capsids are made of a large number of symmetrically organized protein subunits whose local movements can be essential for infection. In the capsid of the minute virus of mice, events required for infection that involve translocation of peptides through capsid pores are associated with a subtle conformational change. In vitro, this change can be reversibly induced by overcoming the energy barrier through mild heating of the capsid, but little is known about the capsid regions involved in the process.
View Article and Find Full Text PDFUnderstanding the fundamental principles underlying supramolecular self-assembly may facilitate many developments, from novel antivirals to self-organized nanodevices. Icosahedral virus particles constitute paradigms to study self-assembly using a combination of theory and experiment. Unfortunately, assembly pathways of the structurally simplest virus capsids, those more accessible to detailed theoretical studies, have been difficult to study experimentally.
View Article and Find Full Text PDFThe analysis of a large number of human and mouse genes codifying for a populated cluster of transmembrane proteins revealed that some of the genes significantly vary in their primary nucleotide sequence inter-species and also intra-species. In spite of that divergence and of the fact that all these genes share a common parental function we asked the question of whether at DNA level they have some kind of common compositional structure, not evident from the analysis of their primary nucleotide sequence. To reveal the existence of gene clusters not based on primary sequence relationships we have analyzed 13574 human and 14047 mouse genes by the composon-clustering methodology.
View Article and Find Full Text PDFIt has been previously suggested that both the coding and the associated non-coding sequences of some human-mouse orthologs could evolve as a single unit. This letter deals with the observation that between mouse and humans some orthologs change significantly their compositional features as an indication that the molecular evolution is a local process. Moreover, the data shown indicate that the coding and the intron sequences of these orthologs do not evolve independently but instead both undergo a concerted evolution, evolving as a single unit, from a compositional cluster in mouse to a different compositional cluster in human.
View Article and Find Full Text PDFMarine algae are instrumental in carbon cycling and atmospheric carbon dioxide (CO2) regulation. One group, coccolithophores, uses carbon to photosynthesize and to calcify, covering their cells with chalk platelets (coccoliths). How ocean acidification influences coccolithophore calcification is strongly debated, and the effects of carbonate chemistry changes in the geological past are poorly understood.
View Article and Find Full Text PDFInfection by human immunodeficiency virus (HIV) depends on the function, in virion morphogenesis and other stages of the viral cycle, of a highly conserved structural element, the major homology region (MHR), within the carboxyterminal domain (CTD) of the capsid protein. In a modified CTD dimer, MHR is swapped between monomers. While no evidence for MHR swapping has been provided by structural models of retroviral capsids, it is unknown whether it may occur transiently along the virus assembly pathway.
View Article and Find Full Text PDFPolymerization of the intact capsid protein (CA) of HIV-1 into mature capsidlike particles at physiological ionic strength in vitro requires macromolecularly crowded conditions that approach those inside the virion, where the mature capsid is assembled in vivo. The capsid is organized as a hexameric lattice. CA subunits in each hexamer are connected through interfaces that involve the CA N-terminal domain (NTD); pairs of CA subunits belonging to different hexamers are connected through a different interface that involves the C-terminal domain (CTD).
View Article and Find Full Text PDFThe polcalcin family is one of the most epidemiologically relevant families of calcium-binding allergens. Polcalcins are potent plant allergens that contain one or several EF-hand motifs and their allergenicity is primarily associated with the Ca(2+)-bound form of the protein. Conformation, stability, as well as IgE recognition of calcium-binding allergens greatly depend on the presence of protein-bound calcium ions.
View Article and Find Full Text PDFMany compounds able to interfere with HIV-1 infection have been identified; some 25 of them have been approved for clinical use. Current anti-HIV-1 therapy involves the use of drug cocktails, which reduces the probability of virus escape. However, many issues remain, including drug toxicity and the emergence of drug-resistant mutant viruses, even in treated patients.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2010
Sensitization to Cupressaceae pollen has become one of the most important causes of pollinosis in Western countries during winter and early spring. However, the characterization of the extracts, the allergens involved and the cross-reactivity with other pollen sources still remain poorly studied; in the case of Cupressus arizonica only two allergens have been described so far. A new allergen from C.
View Article and Find Full Text PDFAims And Background: The purpose of the study was to test the immunological and clinical effects of infusions of dendritic cells pulsed with autologous tumor lysate in patients with advanced cancer.
Patients And Methods: Peripheral blood mononuclear cells from 15 patients with metastatic cancer (melanoma in 10, lung cancer in 2, renal cell carcinoma in 1, sarcoma in 1, breast cancer in 1) were harvested by leukapheresis after mobilization with GM-CSF (5 microg/kg/day s.c.
The quantization of small amounts of chemical denaturants as urea or guanidine hydrochloride in protein solutions after dialysis is a difficult task in the molecular biology laboratory practice. Refractometric methods are useful to quantify a denaturant in the molar range but this methodology is not helpful when the denaturant is present in small amounts. The method herein described is a new comparative method that requires, a priori, the quantification of the stock solutions of urea (8 M) and guanidine hydrochloride (6 M) by refractometry to prepare by sequential dilution the standards used for comparison in the spectropolarimeter.
View Article and Find Full Text PDFThe stability of the substrate-binding region of human inducible Hsp70 was studied by a combination of spectroscopic and calorimetric methods. Thermal denaturation of the protein involves four accessible states: the native state, two largely populated intermediates, and the denatured state, with transition temperatures of 52.8, 56.
View Article and Find Full Text PDF