Polyploidy has been an influential force in plant evolution, playing a crucial role in diversification. Differences in polyploid and diploid distributions have been long noted, with polyploid taxa especially abundant in harsh environments. These plants have higher photosynthetic rates and/or higher tolerance to water deficits.
View Article and Find Full Text PDFClimate change has altered the global distribution of many species. Accordingly, we have assessed here the potential shift in the distribution of Gypsophila bermejoi G. López under distinct scenarios of future climate change, this being a species endemic to the Iberian Peninsula.
View Article and Find Full Text PDFSeveral species of the Gypsophila genus are endemic to the Iberian Peninsula, including gypsophytes of particular ecological, evolutionary and biochemical interest, and taxa that have undergone both sympatric and allopatric genetic differentiation. The niche shift among these taxa has been assessed using ecological niche modelling and ordination techniques, adopting a niche overlap approach to compare the similarity and equivalency of the ecological niches. We used the Maximum Entropy method to study the potential distribution of these taxa in different eras: the Last Glacial Maximum (LGM), the Mid Holocene and the current conditions.
View Article and Find Full Text PDFGypsophila bermejoi G. López is an allopolyploid species derived from the parental G. struthium L.
View Article and Find Full Text PDF