In this paper, we investigate the generalized Langevin-Sturm-Liouville differential problems involving Caputo-Atangana-Baleanu fractional derivatives of higher orders with respect to another positive, increasing function denoted by ρ. The fixed point theorems in the framework of Kransnoselskii and Banach are utilized to discuss the existence and uniqueness of the results. In addition, the stability criteria of Ulam-Hyers, generalize Ulam-Hyers, Ulam-Hyers-Rassias, and generalize Ulam-Hyers-Rassias are investigated by non-linear analysis besides fractional calculus.
View Article and Find Full Text PDFIn this paper, we investigate Bullen-type inequalities applicable to functions that are twice-differentiable. To explore these advanced inequalities, we utilize generalized convexity and Riemann-type fractional integrals. A comparative analysis is provided to highlight the more refined inequalities from among the explored results.
View Article and Find Full Text PDFThis study investigates the dynamic characteristics of the dual-mode resonant non-linear Schrodinger equation with a Bhom potential. Hydrodynamics, nonlinear optical fibre communication, elastic media, and plasma physics are just a few of the mathematical physics and engineering applications for this model. The study aims to achieve two main objectives: first, to discuss bifurcation analysis, and second, to extract optical soliton solutions using the extended hyperbolic function method.
View Article and Find Full Text PDFThe internal atmospheric waves are gravity waves and occur in the inner part of the fluid system. In this study, a time-fractional model for internal atmospheric waves is investigated with the Caputo-Fabrizio time-fractional differential operator. The analytical solution of the considered model is retrieved by the Elzaki Adomian decomposition method.
View Article and Find Full Text PDFThis research manuscript aims to study a novel implicit differential equation in the non-singular fractional derivatives sense, namely Atangana-Baleanu-Caputo ([Formula: see text]) of arbitrary orders belonging to the interval (2, 3] with respect to another positive and increasing function. The major results of the existence and uniqueness are investigated by utilizing the Banach and topology degree theorems. The stability of the Ulam-Hyers ([Formula: see text]) type is analyzed by employing the topics of nonlinear analysis.
View Article and Find Full Text PDFThis research work is devoted to investigating new common fixed point theorems on bipolar fuzzy [Formula: see text]-metric space. Our main findings generalize some of the existence outcomes in the literature. Furthermore, we illustrate our findings by providing some applications for fractional differential and integral equations.
View Article and Find Full Text PDFTo analyze and study the behaviour of the shallow water waves, the perturbed Boussinesq equation has acquired fundamental importance. The principal objective of this paper is to manifest the exact traveling wave solution of the perturbed Boussinesq equation by two well known techniques named as, two variables [Formula: see text] expansion method and generalized projective Riccati equations method. A diverse array of soliton solutions, encompassing periodic, bright solitons, singular solitons and bright singular solitons are obtained by the applications of proposed techniques.
View Article and Find Full Text PDFThis article delves into examining exact soliton solutions within the context of the generalized nonlinear Schrödinger equation. It covers higher-order dispersion with higher order nonlinearity and a parameter associated with weak nonlocality. To tackle this equation, two reputable methods are harnessed: the sine-Gordon expansion method and the [Formula: see text]-expansion method.
View Article and Find Full Text PDFThis research paper focuses on the study of the (3+1)-dimensional negative order KdV-Calogero-Bogoyavlenskii-Schiff (KdV-CBS) equation, an important nonlinear partial differential equation in oceanography. The primary objective is to explore various solution techniques and analyze their graphical representations. Initially, two wave, three wave, and multi-wave solutions of the negative order KdV CBS equation are derived using its bilinear form.
View Article and Find Full Text PDFThis article deals with studying the dynamical behavior of the DNA model proposed by Peyrard and Bishop. The proposed model is investigated using the unified method (UM). Unified method successfully extracts solutions in the form of polynomial and rational functions.
View Article and Find Full Text PDFIn this work, first, we consider novel parameterized identities for the left and right part of the (p,q)-analogue of Hermite-Hadamard inequality. Second, using these new parameterized identities, we give new parameterized (p,q)-trapezoid and parameterized (p,q)-midpoint type integral inequalities via η-quasiconvex function. By changing values of parameter μ∈[0,1], some new special cases from the main results are obtained and some known results are recaptured as well.
View Article and Find Full Text PDFIn this paper, we establish new (p,q)κ1-integral and (p,q)κ2-integral identities. By employing these new identities, we establish new (p,q)κ1 and (p,q)κ2- trapezoidal integral-type inequalities through strongly convex and quasi-convex functions. Finally, some examples are given to illustrate the investigated results.
View Article and Find Full Text PDFIn this investigation, for convex functions, some new (p,q)-Hermite-Hadamard-type inequalities using the notions of (p,q)π2 derivative and (p,q)π2 integral are obtained. Furthermore, for (p,q)π2-differentiable convex functions, some new (p,q) estimates for midpoint and trapezoidal-type inequalities using the notions of (p,q)π2 integral are offered. It is also shown that the newly proved results for p=1 and q→1- can be converted into some existing results.
View Article and Find Full Text PDF