Anisotropic transverse light scattering by prismatic nanowires is a natural outcome of their geometry. In this work, we perform numerical calculations of the light scattering characteristics for nanowires in the optical and near-infrared range and explore the possibility of tuning the directivity by changing the angle of light incidence. The scattering cross section and the directivity of the scattered light when it is incident perpendicular to a facet or to an edge of the prism are investigated both with transverse electric and with transverse magnetic polarizations.
View Article and Find Full Text PDFWe discuss the low energy electronic states in hexagonal rings. These states correspond to the transverse modes in core-shell nanowires built of III-V semiconductors which typically have a hexagonal cross section. In the case of symmetric structures the 12 lowest states (including the spin) are localized in the corners, while the next following 12 states are localized mostly on the sides.
View Article and Find Full Text PDFThe distinctive prismatic geometry of semiconductor core-shell nanowires leads to complex localization patterns of carriers. Here, we describe the formation of optically active in-gap excitonic states induced by the interplay between localization of carriers in the corners and their mutual Coulomb interaction. To compute the energy spectra and configurations of excitons created in the conductive shell, we use a multielectron numerical approach based on the exact solution of the multiparticle Hamiltonian for electrons in the valence and conduction bands, which includes the Coulomb interaction in a nonperturbative manner.
View Article and Find Full Text PDF