A ratiometric fiber optic temperature sensor based on a highly coupled seven-core fiber (SCF) is proposed and experimentally demonstrated. A theoretical analysis of the SCF's sinusoidal spectral response in transmission configuration is presented. The proposed sensor comprises two SCF devices exhibiting anti-phase transmission spectra.
View Article and Find Full Text PDFFor extending focal depth we employ a set of transparent concentric rings, which are coded with the Barker sequences of length L. At the neighborhood of the paraxial focal plane, these transparent masks generate an axial uniform distribution, which is modulated with sinusoidal variations. For imaging applications, one can extend focal depth if the Barker length is congruent to unity modulo 4.
View Article and Find Full Text PDFIn this paper, we propose a highly sensitive temperature sensor based on two cascaded Mach-Zehnder interferometers (MZIs) that work using the Vernier effect. The all-fiber MZIs were assembled by splicing a segment of capillary hollow-core fiber (CHCF) between two sections of multimode fibers (MMFs). This cascaded configuration exhibits a temperature sensitivity of 1.
View Article and Find Full Text PDFAn all-fiber approach is presented to measure surface tension. The experimental realization relies on the use of a specialty fiber, a so-called two-hole fiber (THF), which serves a two-fold purpose: providing a capillary channel to produce bubbles while having the means to measure the power reflected at the end facet of the fiber core. We demonstrate that provided a controlled injection of gas into the hollow channels of the THF, surface tension measurements are possible by simply tracking the Fresnel reflection at the distal end of the THF.
View Article and Find Full Text PDFIn this paper, we propose and experimentally demonstrate a simple technique to enhance the curvature sensitivity of a bending fiber optic sensor based on anti-resonant reflecting optical waveguide (ARROW) guidance. The sensing structure is assembled by splicing a segment of capillary hollow-core fiber (CHCF) between two single-mode fibers (SMF), and the device is set on a steel sheet for measuring different curvatures. Without any surface treatment, the ARROW sensor exhibits a curvature sensitivity of 1.
View Article and Find Full Text PDFThe integration of carbon nanotubes (CNTs) into optical fibers allows the application of their unique properties in robust and versatile devices. Here, we present a laser-induced technique to obtain the deposition of CNTs onto the fiber optics tips of multimode interference (MMI) devices. An MMI device is constructed by splicing a section of no-core fiber (NCF) to a single-mode fiber (SMF).
View Article and Find Full Text PDFWe present an alignment technique that exploits angular correlations by employing a pair of masks, which encode in an angular format pseudo-random sequences. The angular correlator generates peaked irradiance distributions on-axis, provided that the elements of the pair are aligned. Otherwise, the on-axis irradiance distribution decreases to a minimum value.
View Article and Find Full Text PDFThis paper presents a novel method for improving the training step of the single-scale Gabor filters by using the Boltzmann univariate marginal distribution algorithm (BUMDA) in X-ray angiograms. Since the single-scale Gabor filters (SSG) are governed by three parameters, the optimal selection of the SSG parameters is highly desirable in order to maximize the detection performance of coronary arteries while reducing the computational time. To obtain the best set of parameters for the SSG, the area ( ) under the receiver operating characteristic curve is used as fitness function.
View Article and Find Full Text PDFAn ultracompact, cost-effective, and highly accurate fiber optic temperature sensor is proposed and demonstrated. The sensing head consists of Fabry-Perot microcavity formed by an internal mirror made of a thin titanium dioxide (TiO) film and a microscopic segment of single-mode fiber covered with Poly(dimethylsiloxane) (PDMS). Due to the high thermo-optic coefficient of PDMS the reflectance of the fiber-PDMS interface varies strongly with temperature which in turn modifies the amplitude of the interference pattern.
View Article and Find Full Text PDFA novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC) of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF) highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device.
View Article and Find Full Text PDFA simple and compact fiber optic sensor based on a two-core fiber is demonstrated for high-performance measurements of refractive indices (RI) of liquids. In order to demonstrate the suitability of the proposed sensor to perform high-sensitivity sensing in a variety of applications, the sensor has been used to measure the RI of binary liquid mixtures. Such measurements can accurately determine the salinity of salt water solutions, and detect the water content of adulterated alcoholic beverages.
View Article and Find Full Text PDF